Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Clustering in metagenomics is the process of grouping of microbial contigs in species specific bins. This package contains functions that extract genomic features from metagenome data, find the number of clusters for that given data and find the best clustering algorithm for binning.
Normally building a GODB is fairly complicated, involving downloading multiple database files and using these to build e.g. a mySQL database. Accessing this database is also complicated, involving an intimate knowledge of the database in order to construct reliable queries. Here we have a more modest goal, generating GOGOA3, which is a stripped down version of the GODB that was originally restricted to human genes as designated by the HUGO Gene Nomenclature Committee (HGNC) (see <https://geneontology.org/>). I have now added about two dozen additional species, namely all species represented on the Gene Ontology download page <https://current.geneontology.org/products/pages/downloads.html>. This covers most of the model organisms that are commonly used in bio-medical and basic research (assuming that anyone still has a grant to do such research). This can be built in a matter of seconds from 2 easily downloaded files (see <https://current.geneontology.org/products/pages/downloads.html> and <https://geneontology.org/docs/download-ontology/>), and it can be queried by e.g. w<-which(GOGOA3[,"HGNC"] %in% hgncList) where GOGOA3 is a matrix representing the minimalist GODB and hgncList is a list of gene identifiers. This database will be used in my upcoming package GoMiner which is based on my previous publication (see Zeeberg, B.R., Feng, W., Wang, G. et al. (2003)<doi:10.1186/gb-2003-4-4-r28>). Relevant .RData files are available from GitHub (<https://github.com/barryzee/GO/tree/main/databases>).
Multivariate Adaptive Regression Spline (MARS) based Artificial Neural Network (ANN) hybrid model is combined Machine learning hybrid approach which selects important variables using MARS and then fits ANN on the extracted important variables.
Measure quality of your tests. muttest introduces small changes (mutations) to your code and runs your tests to check if they catch the changes. If they do, your tests are good. If not, your assertions are not specific enough. muttest gives you percent score of how often your tests catch the changes.
This package contains functions for performing Mokken scale analysis on test and questionnaire data. It includes an automated item selection algorithm, and various checks of model assumptions.
Offers a general framework of multivariate mixed-effects models for the joint analysis of multiple correlated outcomes with clustered data structures and potential missingness proposed by Wang et al. (2018) <doi:10.1093/biostatistics/kxy022>. The missingness of outcome values may depend on the values themselves (missing not at random and non-ignorable), or may depend on only the covariates (missing at random and ignorable), or both. This package provides functions for two models: 1) mvMISE_b() allows correlated outcome-specific random intercepts with a factor-analytic structure, and 2) mvMISE_e() allows the correlated outcome-specific error terms with a graphical lasso penalty on the error precision matrix. Both functions are motivated by the multivariate data analysis on data with clustered structures from labelling-based quantitative proteomic studies. These models and functions can also be applied to univariate and multivariate analyses of clustered data with balanced or unbalanced design and no missingness.
Developed for model-based clustering using the finite mixtures of skewed sub-Gaussian stable distributions developed by Teimouri (2022) <arXiv:2205.14067> and estimating parameters of the symmetric stable distribution within the Bayesian framework.
This package provides access to teaching materials for various statistics courses, including R and Python programs, Shiny apps, data, and PDF/HTML documents. These materials are stored on the Internet as a ZIP file (e.g., in a GitHub repository) and can be downloaded and displayed or run locally. The content of the ZIP file is temporarily or permanently stored. By default, the package uses the GitHub repository sigbertklinke/mmstat4.data. Additionally, the package includes association_measures.R from the archived package ryouready by Mark Heckman and some auxiliary functions.
Symbolic computing with multivariate polynomials in R.
Designs plots in terms of core structure. See example(metaplot)'. Primary arguments are (unquoted) column names; order and type (numeric or not) dictate the resulting plot. Specify any y variables, x variable, any groups variable, and any conditioning variables to metaplot() to generate density plots, boxplots, mosaic plots, scatterplots, scatterplot matrices, or conditioned plots. Use multiplot() to arrange plots in grids. Wherever present, scalar column attributes label and guide are honored, producing fully annotated plots with minimal effort. Attribute guide is typically units, but may be encoded() to provide interpretations of categorical values (see ?encode'). Utility unpack() transforms scalar column attributes to row values and pack() does the reverse, supporting tool-neutral storage of metadata along with primary data. The package supports customizable aesthetics such as such as reference lines, unity lines, smooths, log transformation, and linear fits. The user may choose between trellis and ggplot output. Compact syntax and integrated metadata promote workflow scalability.
This package provides methods for controlling the median of the false discovery proportion (mFDP). Depending on the method, simultaneous or non-simultaneous inference is provided. The methods take a vector of p-values or test statistics as input.
We develop Multi-source Graph Synthesis (MUGS), an algorithm designed to create embeddings for pediatric Electronic Health Record (EHR) codes by leveraging graphical information from three distinct sources: (1) pediatric EHR data, (2) EHR data from the general patient population, and (3) existing hierarchical medical ontology knowledge shared across different patient populations. See Li et al. (2024) <doi:10.1038/s41746-024-01320-4> for details.
Mixed variable optimization for non-linear functions. Can optimize function whose inputs are a combination of continuous, ordered, and unordered variables.
Various kinds of plots (observations, variables, correlations, weights, regression coefficients and Variable Importance in the Projection) and aids to interpretation (coefficients, Q2, correlations, redundancies) for partial least squares regressions computed with the pls package, following Tenenhaus (1998, ISBN:2-7108-0735-1).
Evaluate hypotheses concerning the distribution of multinomial proportions using bridge sampling. The bridge sampling routine is able to compute Bayes factors for hypotheses that entail inequality constraints, equality constraints, free parameters, and mixtures of all three. These hypotheses are tested against the encompassing hypothesis, that all parameters vary freely or against the null hypothesis that all category proportions are equal. For more information see Sarafoglou et al. (2020) <doi:10.31234/osf.io/bux7p>.
This package provides a leadership-inference framework for multivariate time series. The framework for multiple-faction-leadership inference from coordinated activities or mFLICA uses a notion of a leader as an individual who initiates collective patterns that everyone in a group follows. Given a set of time series of individual activities, our goal is to identify periods of coordinated activity, find factions of coordination if more than one exist, as well as identify leaders of each faction. For each time step, the framework infers following relations between individual time series, then identifying a leader of each faction whom many individuals follow but it follows no one. A faction is defined as a group of individuals that everyone follows the same leader. mFLICA reports following relations, leaders of factions, and members of each faction for each time step. Please see Chainarong Amornbunchornvej and Tanya Berger-Wolf (2018) <doi:10.1137/1.9781611975321.62> for methodology and Chainarong Amornbunchornvej (2021) <doi:10.1016/j.softx.2021.100781> for software when referring to this package in publications.
Calculate different metrics based on aquatic macroinvertebrate density data (individuals per square meter) to assess water quality (Prat N et al. 2009).
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. BEAST2 is commonly accompanied by BEAUti 2 (<https://www.beast2.org>), which, among others, allows one to install BEAST2 package. This package allows to work with BEAST2 packages from R'.
This package provides readers for easy and consistent importing of Mouse Genome Informatics (MGI) report files: <https://www.informatics.jax.org/downloads/reports/index.html>. These data are provided by Baldarelli RM, Smith CL, Ringwald M, Richardson JE, Bult CJ, Mouse Genome Informatics Group (2024) <doi:10.1093/genetics/iyae031>.
This package provides a fast, flexible machine learning library, written in C++, that aims to provide fast, extensible implementations of cutting-edge machine learning algorithms. See also Curtin et al. (2023) <doi:10.21105/joss.05026>.
This package provides a lightweight, dependency-free data engine for R that provides a grammar for tabular and time-series manipulation. Built entirely on Base R, m61r offers a fluent, chainable API inspired by modern data tools while prioritizing memory efficiency and speed. It includes optimized versions of common data verbs such as filtering, mutation, grouped aggregation, and approximate temporal joins, making it an ideal choice for environments where external dependencies are restricted or where performance in pure R is required.
Analysis and visualisation of synchrony, interaction, and joint movements from audio and video movement data of a group of music performers. The demo is data described in Clayton, Leante, and Tarsitani (2021) <doi:10.17605/OSF.IO/KS325>, while example analyses can be found in Clayton, Jakubowski, and Eerola (2019) <doi:10.1177/1029864919844809>. Additionally, wavelet analysis techniques have been applied to examine movement-related musical interactions, as shown in Eerola et al. (2018) <doi:10.1098/rsos.171520>.
Interfaces the Python library zuko implementing Masked Autoregressive Flows. See Rozet, Divo and Schnake (2023) <doi:10.5281/zenodo.7625672> and Papamakarios, Pavlakou and Murray (2017) <doi:10.48550/arXiv.1705.07057>.
This package provides a data package containing public domain information on requests made by the MuckRock (https://www.muckrock.com/) project under the United States Freedom of Information Act.