Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a model-based clustering method for categorical life-course sequences relying on mixtures of exponential-distance models introduced by Murphy et al. (2021) <doi:10.1111/rssa.12712>. A range of flexible precision parameter settings corresponding to weighted generalisations of the Hamming distance metric are considered, along with the potential inclusion of a noise component. Gating covariates can be supplied in order to relate sequences to baseline characteristics and sampling weights are also accommodated. The models are fitted using the EM algorithm and tools for visualising the results are also provided.
Multiscale moving sum procedure for the detection of changes in expectation in univariate sequences. References - Multiscale change point detection via gradual bandwidth adjustment in moving sum processes (2021+), Tijana Levajkovic and Michael Messer.
Algorithms compute robust estimators for loss functions in the concave convex (CC) family by the iteratively reweighted convex optimization (IRCO), an extension of the iteratively reweighted least squares (IRLS). The IRCO reduces the weight of the observation that leads to a large loss; it also provides weights to help identify outliers. Applications include robust (penalized) generalized linear models and robust support vector machines. The package also contains penalized Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial regression models and robust models with non-convex loss functions. Wang et al. (2014) <doi:10.1002/sim.6314>, Wang et al. (2015) <doi:10.1002/bimj.201400143>, Wang et al. (2016) <doi:10.1177/0962280214530608>, Wang (2021) <doi:10.1007/s11749-021-00770-2>, Wang (2024) <doi:10.1111/anzs.12409>.
The goal of MRMCbinary is to compare the performance of diagnostic tests (i.e., sensitivity and specificity) for binary outcomes in multi-reader multi-case (MRMC) studies. It is based on conditional logistic regression and Cochranâ s Q test (or McNemarâ s test when the number of modalities is equal to 2).
Additional documentation, a package vignette and regression tests for package mlt.
This package provides tools necessary to reconstruct clonal affiliations from temporally and/or spatially separated measurements of viral integration sites. For this means it utilizes correlations present in the relative readouts of the integration sites. Furthermore, facilities for filtering of the data and visualization of different steps in the pipeline are provided with the package.
This package provides methods for quantifying the information gain contributed by individual modalities in multimodal regression models. Information gain is measured using Expected Relative Entropy (ERE) or pseudo-R² metrics, with corresponding p-values and confidence intervals. Currently supports linear and logistic regression models with plans for extension to additional Generalized Linear Models and Cox proportional hazard model.
Conjoint measurement is a psychophysical procedure in which stimulus pairs are presented that vary along 2 or more dimensions and the observer is required to compare the stimuli along one of them. This package contains functions to estimate the contribution of the n scales to the judgment by a maximum likelihood method under several hypotheses of how the perceptual dimensions interact. Reference: Knoblauch & Maloney (2012) "Modeling Psychophysical Data in R". <doi:10.1007/978-1-4614-4475-6>.
This GUI for the mi package walks the user through the steps of multiple imputation and the analysis of completed data.
This package provides a class for multi-companion matrices with methods for arithmetic and factorization. A method for generation of multi-companion matrices with prespecified spectral properties is provided, as well as some utilities for periodically correlated and multivariate time series models. See Boshnakov (2002) <doi:10.1016/S0024-3795(01)00475-X> and Boshnakov & Iqelan (2009) <doi:10.1111/j.1467-9892.2009.00617.x>.
Computation of standardized interquartile range (IQR), Huber-type skipped mean (Hampel (1985), <doi:10.2307/1268758>), robust coefficient of variation (CV) (Arachchige et al. (2019), <doi:10.48550/arXiv.1907.01110>), robust signal to noise ratio (SNR), z-score, standardized mean difference (SMD), as well as functions that support graphical visualization such as boxplots based on quartiles (not hinges), negative logarithms and generalized logarithms for ggplot2 (Wickham (2016), ISBN:978-3-319-24277-4).
Designs plots in terms of core structure. See example(metaplot)'. Primary arguments are (unquoted) column names; order and type (numeric or not) dictate the resulting plot. Specify any y variables, x variable, any groups variable, and any conditioning variables to metaplot() to generate density plots, boxplots, mosaic plots, scatterplots, scatterplot matrices, or conditioned plots. Use multiplot() to arrange plots in grids. Wherever present, scalar column attributes label and guide are honored, producing fully annotated plots with minimal effort. Attribute guide is typically units, but may be encoded() to provide interpretations of categorical values (see ?encode'). Utility unpack() transforms scalar column attributes to row values and pack() does the reverse, supporting tool-neutral storage of metadata along with primary data. The package supports customizable aesthetics such as such as reference lines, unity lines, smooths, log transformation, and linear fits. The user may choose between trellis and ggplot output. Compact syntax and integrated metadata promote workflow scalability.
Meta-analyses can be compromised by studies internal biases (e.g., confounding in nonrandomized studies) as well as by publication bias. This package conducts sensitivity analyses for the joint effects of these biases (per Mathur (2022) <doi:10.31219/osf.io/u7vcb>). These sensitivity analyses address two questions: (1) For a given severity of internal bias across studies and of publication bias, how much could the results change?; and (2) For a given severity of publication bias, how severe would internal bias have to be, hypothetically, to attenuate the results to the null or by a given amount?
Climate-sensitive, single-tree forest simulator based on data-driven machine learning. It simulates the main forest processesâ radial growth, height growth, mortality, crown recession, regeneration, and harvestingâ so users can assess stand development under climate and management scenarios. The height model is described by Skudnik and JevÅ¡enak (2022) <doi:10.1016/j.foreco.2022.120017>, the basal-area increment model by JevÅ¡enak and Skudnik (2021) <doi:10.1016/j.foreco.2020.118601>, and an overview of the MLFS package, workflow, and applications is provided by JevÅ¡enak, ArniÄ , Krajnc, and Skudnik (2023), Ecological Informatics <doi:10.1016/j.ecoinf.2023.102115>.
This package provides a set of functions to investigate raw data from (metabol)omics experiments intended to be used on a raw data matrix, i.e. following peak picking and signal deconvolution. Functions can be used to normalize data, detect biomarkers and perform sample classification. A detailed description of best practice usage may be found in the publication <doi:10.1007/978-1-4939-7819-9_20>.
The microplot function writes a set of R graphics files to be used as microplots (sparklines) in tables in either LaTeX', HTML', Word', or Excel files. For LaTeX', we provide methods for the Hmisc::latex() generic function to construct latex tabular environments which include the graphs. These can be used directly with the operating system pdflatex or latex command, or by using one of Sweave', knitr', rmarkdown', or Emacs org-mode as an intermediary. For MS Word', the msWord() function uses the flextable package to construct Word tables which include the graphs. There are several distinct approaches for constructing HTML files. The simplest is to use the msWord() function with argument filetype="html". Alternatively, use either Emacs org-mode or the htmlTable::htmlTable() function to construct an HTML file containing tables which include the graphs. See the documentation for our as.htmlimg() function. For Excel use on Windows', the file examples/irisExcel.xls includes VBA code which brings the individual panels into individual cells in the spreadsheet. Examples in the examples and demo subdirectories are shown with lattice graphics, ggplot2 graphics, and base graphics. Examples for LaTeX include Sweave (both LaTeX'-style and Noweb'-style), knitr', emacs org-mode', and rmarkdown input files and their pdf output files. Examples for HTML include org-mode and Rmd input files and their webarchive HTML output files. In addition, the as.orgtable() function can display a data.frame in an org-mode document. The examples for MS Word (with either filetype="docx" or filetype="html") work with all operating systems. The package does not require the installation of LaTeX or MS Word to be able to write .tex or .docx files.
Fitting multivariate response models with random effects on one or two levels; whereby the (one-dimensional) random effect represents a latent variable approximating the multivariate space of outcomes, after possible adjustment for covariates. The method is particularly useful for multivariate, highly correlated outcome variables with unobserved heterogeneities. Applications include regression with multivariate responses, as well as multivariate clustering or ranking problems. See Zhang and Einbeck (2024) <doi:10.1007/s42519-023-00357-0>.
This package performs maximum a posteriori Bayesian estimation of individual pharmacokinetic parameters from a model defined in mrgsolve', typically for model-based therapeutic drug monitoring. Internally computes an objective function value from model and data, performs optimization and returns predictions in a convenient format. The performance of the package was described by Le Louedec et al (2021) <doi:10.1002/psp4.12689>.
Estimation, inference and forecasting using the Bayesian approach for multivariate threshold autoregressive (TAR) models in which the distribution used to describe the noise process belongs to the class of Gaussian variance mixtures.
MTrackJ is an ImageJ plugin for motion tracking and analysis (see <https://imagescience.org/meijering/software/mtrackj/>). This package reads and writes MTrackJ Data Files ('.mdf', see <https://imagescience.org/meijering/software/mtrackj/format/>). It supports 2D data and read/writes cluster, point, and channel information. If desired, generates track identifiers that are unique over the clusters. See the project page for more information and examples.
This package provides a framework for multiple imputation for proteomics is proposed by Marie Chion, Christine Carapito and Frederic Bertrand (2021) <doi:10.1371/journal.pcbi.1010420>. It is dedicated to dealing with multiple imputation for proteomics.
This package provides routines for multivariate measurement error correction. Includes procedures for linear, logistic and Cox regression models. Bootstrapped standard errors and confidence intervals can be obtained for corrected estimates.
This package implements Mander & Thompson's (2010) <doi:10.1016/j.cct.2010.07.008> methods for two-stage designs optimal under the alternative hypothesis for phase II [cancer] trials. Also provides an implementation of Simon's (1989) <doi:10.1016/0197-2456(89)90015-9> original methodology and allows exploration of the operating characteristics of sub-optimal designs.
Focus-glue-context (FGC) fisheye transformations to two-dimensional coordinates and spatial vector geometries. Implements a smooth radial distortion that enlarges a focal region, transitions through a glue ring, and preserves outside context. Methods build on generalized fisheye views and focus+context mapping. For more details see Furnas (1986) <doi:10.1145/22339.22342>, Furnas (2006) <doi:10.1145/1124772.1124921> and Yamamoto et al. (2009) <doi:10.1145/1653771.1653788>.