Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the multivariate adaptive shrinkage (mash) method of Urbut et al (2019) <DOI:10.1038/s41588-018-0268-8> for estimating and testing large numbers of effects in many conditions (or many outcomes). Mash takes an empirical Bayes approach to testing and effect estimation; it estimates patterns of similarity among conditions, then exploits these patterns to improve accuracy of the effect estimates. The core linear algebra is implemented in C++ for fast model fitting and posterior computation.
This package provides multigroup Kitagawa-Blinder-Oaxaca ('mKBO') decompositions, that allow for more than two groups. Each group is compared to the sample average. For more details see Thaning and Nieuwenhuis (2025) <doi:10.31235/osf.io/6twvj_v1>.
It contains six common multi-category classification accuracy evaluation measures. All of these measures could be found in Li and Ming (2019) <doi:10.1002/sim.8103>. Specifically, Hypervolume Under Manifold (HUM), described in Li and Fine (2008) <doi:10.1093/biostatistics/kxm050>. Correct Classification Percentage (CCP), Integrated Discrimination Improvement (IDI), Net Reclassification Improvement (NRI), R-Squared Value (RSQ), described in Li, Jiang and Fine (2013) <doi:10.1093/biostatistics/kxs047>. Polytomous Discrimination Index (PDI), described in Van Calster et al. (2012) <doi:10.1007/s10654-012-9733-3>. Li et al. (2018) <doi:10.1177/0962280217692830>. We described all these above measures and our mcca package in Li, Gao and D'Agostino (2019) <doi:10.1002/sim.8103>.
The iterative procedure estimates structural changes in the success probability of Bernoulli variables. It estimates the number and location of the breakpoints as well as the success probability of the different sequences between the breakpoints. In addition, it provides a graphical illustration of the result.
This package performs maximal interaction two-mode clustering, permutation tests, scree plots, and interaction visualizations for bicluster analysis. See Ahmed et al. (2025) <doi:10.17605/OSF.IO/AWGXB>, Ahmed et al. (2023) <doi:10.1007/s00357-023-09434-2>, Ahmed et al. (2021) <doi:10.1007/s11634-021-00441-y>.
Semi-parametric approach for sparse canonical correlation analysis which can handle mixed data types: continuous, binary and truncated continuous. Bridge functions are provided to connect Kendall's tau to latent correlation under the Gaussian copula model. The methods are described in Yoon, Carroll and Gaynanova (2020) <doi:10.1093/biomet/asaa007> and Yoon, Mueller and Gaynanova (2021) <doi:10.1080/10618600.2021.1882468>.
Algorithms for multivariate outlier detection when missing values occur. Algorithms are based on Mahalanobis distance or data depth. Imputation is based on the multivariate normal model or uses nearest neighbour donors. The algorithms take sample designs, in particular weighting, into account. The methods are described in Bill and Hulliger (2016) <doi:10.17713/ajs.v45i1.86>.
This package provides the biggest amount of statistical measures in the whole R world. Includes measures of regression, (multiclass) classification and multilabel classification. The measures come mainly from the mlr package and were programed by several mlr developers.
This package performs matrix skew-t parameter estimation, Gallaugher and McNicholas (2017) <doi: 10.1002/sta4.143>.
Modular implementation of Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) [Zhang and Li (2007), <DOI:10.1109/TEVC.2007.892759>] for quick assembling and testing of new algorithmic components, as well as easy replication of published MOEA/D proposals. The full framework is documented in a paper published in the Journal of Statistical Software [<doi:10.18637/jss.v092.i06>].
Implementation of the Monothetic Clustering algorithm (Chavent, 1998 <doi:10.1016/S0167-8655(98)00087-7>) on continuous data sets. A lot of extensions are included in the package, including applying Monothetic clustering on data sets with circular variables, visualizations with the results, and permutation and cross-validation based tests to support the decision on the number of clusters.
Estimates models that extend the standard GLM to take misclassification into account. The models require side information from a secondary data set on the misclassification process, i.e. some sort of misclassification probabilities conditional on some common covariates. A detailed description of the algorithm can be found in Dlugosz, Mammen and Wilke (2015) <https://ftp.zew.de/pub/zew-docs/dp/dp15043.pdf>.
This package provides a general framework for clinical trial simulations based on the Clinical Scenario Evaluation (CSE) approach. The package supports a broad class of data models (including clinical trials with continuous, binary, survival-type and count-type endpoints as well as multivariate outcomes that are based on combinations of different endpoints), analysis strategies and commonly used evaluation criteria.
This package provides a suite of functions for performing analyses, based on a multiverse approach, for conditioning data. Specifically, given the appropriate data, the functions are able to perform t-tests, analyses of variance, and mixed models for the provided data and return summary statistics and plots. The function is also able to return for all those tests p-values, confidence intervals, and Bayes factors. The methods are described in Lonsdorf, Gerlicher, Klingelhofer-Jens, & Krypotos (2022) <doi:10.1016/j.brat.2022.104072>. Since November 2025, this package contains code from the ez R package (Copyright (c) 2016-11-01, Michael A. Lawrence <mike.lwrnc@gmail.com>), originally distributed under the GPL (equal and above 2) license.
This package provides a function to perform bias diagnostics on linear mixed models fitted with lmer() from the lme4 package. Implements permutation tests for assessing the bias of fixed effects, as described in Karl and Zimmerman (2021) <doi:10.1016/j.jspi.2020.06.004>. Karl and Zimmerman (2020) <doi:10.17632/tmynggddfm.1> provide R code for implementing the test using mvglmmRank output. Development of this package was assisted by GPT o1-preview for code structure and documentation.
This package provides a framework which should improve reproducibility and transparency in data processing. It provides functionality such as automatic meta data creation and management, rudimentary quality management, data caching, work-flow management and data aggregation. * The title is a wish not a promise. By no means we expect this package to deliver everything what is needed to achieve full reproducibility and transparency, but we believe that it supports efforts in this direction.
This package provides a collection of machine learning helper functions, particularly assisting in the Exploratory Data Analysis phase. Makes heavy use of the data.table package for optimal speed and memory efficiency. Highlights include a versatile bin_data() function, sparsify() for converting a data.table to sparse matrix format with one-hot encoding, fast evaluation metrics, and empirical_cdf() for calculating empirical Multivariate Cumulative Distribution Functions.
This package performs the MRFA approach proposed by Sung et al. (2020) <doi:10.1080/01621459.2019.1595630> to fit and predict nonlinear regression problems, particularly for large-scale and high-dimensional problems. The application includes deterministic or stochastic computer experiments, spatial datasets, and so on.
This package provides a user-friendly tool for visualizing categorical or group movement.
This package provides tools to generate random landscape graphs, evaluate species occurrence in dynamic landscapes, simulate future landscape occupation and evaluate range expansion when new empty patches are available (e.g. as a result of climate change). References: Mestre, F., Canovas, F., Pita, R., Mira, A., Beja, P. (2016) <doi:10.1016/j.envsoft.2016.03.007>; Mestre, F., Risk, B., Mira, A., Beja, P., Pita, R. (2017) <doi:10.1016/j.ecolmodel.2017.06.013>; Mestre, F., Pita, R., Mira, A., Beja, P. (2020) <doi:10.1186/s12898-019-0273-5>.
This package provides a framework to factorise electromyography (EMG) data. Tools are provided for raw data pre-processing, non negative matrix factorisation, classification of factorised data and plotting of obtained outcomes. In particular, reading from ASCII files is supported, along with wide-used filtering approaches to process EMG data. All steps include one or more sensible defaults that aim at simplifying the workflow. Yet, all functions are largely tunable at need. Example data sets are included.
This package implements two methods: a nonparametric risk adjustment and a data imputation method that use general population mortality tables to allow a correct analysis of time to disease recurrence. Also includes a powerful set of object oriented survival data simulation functions.
This package provides tools that extend the functionality of the RODBC package to work with Microsoft SQL Server databases. Makes it easier to browse the database and examine individual tables and views.
Using this package, one can determine the minimum sample size required so that the absolute deviation of the sample mean and the population mean of a distribution becomes less than some pre-determined epsilon, i.e. it helps the user to determine the minimum sample size required to attain the pre-fixed precision level by minimizing the difference between the sample mean and population mean.