Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementations in cpp of the BayesProject algorithm (see G. Hahn, P. Fearnhead, I.A. Eckley (2020) <doi:10.1007/s11222-020-09966-2>) which implements a fast approach to compute a projection direction for multivariate changepoint detection, as well as the sum-cusum and max-cusum methods, and a wild binary segmentation wrapper for all algorithms.
This package provides a GUI with which the user can construct and interact with Bootstrap methods on Classical Biplots and with Clustering and/or Disjoint Biplot. This GUI is also aimed for estimate any numerical data matrix using the Clustering and Disjoint Principal component (CDPCA) methodology.
The Behavioral Change Point Analysis (BCPA) is a method of identifying hidden shifts in the underlying parameters of a time series, developed specifically to be applied to animal movement data which is irregularly sampled. The method is based on: E. Gurarie, R. Andrews and K. Laidre A novel method for identifying behavioural changes in animal movement data (2009) Ecology Letters 12:5 395-408. A development version is on <https://github.com/EliGurarie/bcpa>. NOTE: the BCPA method may be useful for any univariate, irregularly sampled Gaussian time-series, but animal movement analysts are encouraged to apply correlated velocity change point analysis as implemented in the smoove package, as of this writing on GitHub at <https://github.com/EliGurarie/smoove>. An example of a univariate analysis is provided in the UnivariateBCPA vignette.
This package provides a collection of methods to determine the required sample size for the evaluation of inequality constrained hypotheses by means of a Bayes factor. Alternatively, for a given sample size, the unconditional error probabilities or the expected conditional error probabilities can be determined. Additional material on the methods in this package is available in Klaassen, F., Hoijtink, H. & Gu, X. (2019) <doi:10.31219/osf.io/d5kf3>.
Temporal Exponential Random Graph Models (TERGM) estimated by maximum pseudolikelihood with bootstrapped confidence intervals or Markov Chain Monte Carlo maximum likelihood. Goodness of fit assessment for ERGMs, TERGMs, and SAOMs. Micro-level interpretation of ERGMs and TERGMs. The methods are described in Leifeld, Cranmer and Desmarais (2018), JStatSoft <doi:10.18637/jss.v083.i06>.
This package provides tools for fitting Bayesian single index models with flexible choices of priors for both the index and the link function. The package implements model estimation and posterior inference using efficient MCMC algorithms built on the nimble framework, allowing users to specify, extend, and simulate models in a unified and reproducible manner. The following methods are implemented in the package: Antoniadis et al. (2004) <https://www.jstor.org/stable/24307224>, Wang (2009) <doi:10.1016/j.csda.2008.12.010>, Choi et al. (2011) <doi:10.1080/10485251003768019>, Dhara et al. (2019) <doi:10.1214/19-BA1170>, McGee et al. (2023) <doi:10.1111/biom.13569>.
Bayesian seemingly unrelated regression with general variable selection and dense/sparse covariance matrix. The sparse seemingly unrelated regression is described in Bottolo et al. (2021) <doi:10.1111/rssc.12490>, the software paper is in Zhao et al. (2021) <doi:10.18637/jss.v100.i11>, and the model with random effects is described in Zhao et al. (2024) <doi:10.1093/jrsssc/qlad102>.
Bayesian analysis for stochastic extensions of non-linear dynamic systems using advanced computational algorithms. Described in Bouranis, L., Demiris, N., Kalogeropoulos, K., and Ntzoufras, I. (2022) <doi:10.48550/arXiv.2211.15229>.
Decomposition for differences-in-differences with variation in treatment timing from Goodman-Bacon (2018) <doi:10.3386/w25018>.
Data on the first 24 seasons of the UK TV show I'm a Celebrity, Get Me Out of Here', broadcast from 2002-2024. Taken from the Wikipedia pages for each season and the main page available at <https://en.wikipedia.org/wiki/I%27m_a_Celebrity...Get_Me_Out_of_Here!_(British_TV_series)>.
Querying, extracting, and processing large-scale network data from Neo4j databases using the Neo4j Bolt <https://neo4j.com/docs/bolt/current/bolt/> protocol. This interface supports efficient data retrieval, batch processing for large datasets, and seamless conversion of query results into R data frames, making it ideal for bioinformatics, computational biology, and other graph-based applications.
This package provides arithmetic functions for R matrix and big.matrix objects as well as functions for QR factorization, Cholesky factorization, General eigenvalue, and Singular value decomposition (SVD). A method matrix multiplication and an arithmetic method -for matrix addition, matrix difference- allows for mixed type operation -a matrix class object and a big.matrix class object- and pure type operation for two big.matrix class objects.
Generates interactive bipartite graphs using the D3 library. Designed for use with the bipartite analysis package. Includes open source viz-js library Adapted from examples at <https://bl.ocks.org/NPashaP> (released under GPL-3).
This package provides functions that allow users to quantify the relative contributions of geographic and ecological distances to empirical patterns of genetic differentiation on a landscape. Specifically, we use a custom Markov chain Monte Carlo (MCMC) algorithm, which is used to estimate the parameters of the inference model, as well as functions for performing MCMC diagnosis and assessing model adequacy.
Generates nonparametric bootstrap confidence intervals (Efron and Tibshirani, 1993: <doi:10.1201/9780429246593>) for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm().
This package provides methods to estimate optimal dynamic treatment regimes using Bayesian likelihood-based regression approach as described in Yu, W., & Bondell, H. D. (2023) <doi:10.1093/jrsssb/qkad016> Uses backward induction and dynamic programming theory for computing expected values. Offers options for future parallel computing.
The Pritchard-Stephens-Donnelly (PSD) admixture model has k intermediate subpopulations from which n individuals draw their alleles dictated by their individual-specific admixture proportions. The BN-PSD model additionally imposes the Balding-Nichols (BN) allele frequency model to the intermediate populations, which therefore evolved independently from a common ancestral population T with subpopulation-specific FST (Wright's fixation index) parameters. The BN-PSD model can be used to yield complex population structures. This simulation approach is now extended to subpopulations related by a tree. Method described in Ochoa and Storey (2021) <doi:10.1371/journal.pgen.1009241>.
This package provides methods for probabilistic reconciliation of hierarchical forecasts of time series. The available methods include analytical Gaussian reconciliation (Corani et al., 2021) <doi:10.1007/978-3-030-67664-3_13>, MCMC reconciliation of count time series (Corani et al., 2024) <doi:10.1016/j.ijforecast.2023.04.003>, Bottom-Up Importance Sampling (Zambon et al., 2024) <doi:10.1007/s11222-023-10343-y>, methods for the reconciliation of mixed hierarchies (Mix-Cond and TD-cond) (Zambon et al., 2024) <https://proceedings.mlr.press/v244/zambon24a.html>.
Implementation of the bunching estimator for kinks and notches. Allows for flexible estimation of counterfactual (e.g. controlling for round number bunching, accounting for other bunching masses within bunching window, fixing bunching point to be minimum, maximum or median value in its bin, etc.). It produces publication-ready plots in the style followed since Chetty et al. (2011) <doi:10.1093/qje/qjr013>, with lots of functionality to set plot options.
This package provides a GUI to correct measurement bias in DNA methylation analyses. The BiasCorrector package just wraps the functions implemented in the R package rBiasCorrection into a shiny web application in order to make them more easily accessible. Publication: Kapsner et al. (2021) <doi:10.1002/ijc.33681>.
The shiny application bdDwC makes biodiversity data field names Darwin Core compatible.
Various layers of B.C., including administrative boundaries, natural resource management boundaries, census boundaries etc. All layers are available in BC Albers (<https://spatialreference.org/ref/epsg/3005/>) equal-area projection, which is the B.C. government standard. The layers are sourced from the British Columbia and Canadian government under open licenses, including B.C. Data Catalogue (<https://data.gov.bc.ca>), the Government of Canada Open Data Portal (<https://open.canada.ca/en/using-open-data>), and Statistics Canada (<https://www.statcan.gc.ca/en/reference/licence>).
Implementation of the record linkage methodology proposed by Sadinle (2017) <doi:10.1080/01621459.2016.1148612>. It handles the bipartite record linkage problem, where two duplicate-free datafiles are to be merged.
Fit Bayesian models with a focus on the spatial econometric models.