_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-mscmt 1.4.1
Propagated dependencies: r-rglpk@0.6-5.1 r-rdpack@2.6.4 r-lpsolveapi@5.5.2.0-17.14 r-lpsolve@5.6.23 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MSCMT
Licenses: GPL 2+ GPL 3+
Synopsis: Multivariate Synthetic Control Method Using Time Series
Description:

Three generalizations of the synthetic control method (which has already an implementation in package Synth') are implemented: first, MSCMT allows for using multiple outcome variables, second, time series can be supplied as economic predictors, and third, a well-defined cross-validation approach can be used. Much effort has been taken to make the implementation as stable as possible (including edge cases) without losing computational efficiency. A detailed description of the main algorithms is given in Becker and Klöà ner (2018) <doi:10.1016/j.ecosta.2017.08.002>.

r-marlod 0.2.2
Propagated dependencies: r-survival@3.8-3 r-quantreg@6.1 r-mass@7.3-65 r-knitr@1.50
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=marlod
Licenses: GPL 3
Synopsis: Marginal Modeling for Exposure Data with Values Below the LOD
Description:

This package provides functions of marginal mean and quantile regression models are used to analyze environmental exposure and biomonitoring data with repeated measurements and non-detects (i.e., values below the limit of detection (LOD)), as well as longitudinal exposure data that include non-detects and time-dependent covariates. For more details see Chen IC, Bertke SJ, Curwin BD (2021) <doi:10.1038/s41370-021-00345-1>, Chen IC, Bertke SJ, Estill CF (2024) <doi:10.1038/s41370-024-00640-7>, Chen IC, Bertke SJ, Dahm MM (2024) <doi:10.1093/annweh/wxae068>, and Chen IC (2025) <doi:10.1038/s41370-025-00752-8>.

r-mallet 1.3.0
Dependencies: openjdk@25
Propagated dependencies: r-rjava@1.0-11 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/mimno/RMallet
Licenses: Expat
Synopsis: An R Wrapper for the Java Mallet Topic Modeling Toolkit
Description:

An R interface for the Java Machine Learning for Language Toolkit (mallet) <http://mallet.cs.umass.edu/> to estimate probabilistic topic models, such as Latent Dirichlet Allocation. We can use the R package to read textual data into mallet from R objects, run the Java implementation of mallet directly in R, and extract results as R objects. The Mallet toolkit has many functions, this wrapper focuses on the topic modeling sub-package written by David Mimno. The package uses the rJava package to connect to a JVM.

r-mvar 2.2.7
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MVar
Licenses: GPL 3
Synopsis: Multivariate Analysis
Description:

Multivariate analysis, having functions that perform simple correspondence analysis (CA) and multiple correspondence analysis (MCA), principal components analysis (PCA), canonical correlation analysis (CCA), factorial analysis (FA), multidimensional scaling (MDS), linear (LDA) and quadratic discriminant analysis (QDA), hierarchical and non-hierarchical cluster analysis, simple and multiple linear regression, multiple factor analysis (MFA) for quantitative, qualitative, frequency (MFACT) and mixed data, biplot, scatter plot, projection pursuit (PP), grant tour method and other useful functions for the multivariate analysis.

r-malaytextr 0.1.3
Propagated dependencies: r-stringr@1.6.0 r-rlang@1.1.6 r-magrittr@2.0.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/zahiernasrudin/malaytextr
Licenses: Expat
Synopsis: Text Mining for Bahasa Malaysia
Description:

It is designed to work with text written in Bahasa Malaysia. We provide functions and data sets that will make working with Bahasa Malaysia text much easier. For word stemming in particular, we will look up the Malay words in a dictionary and then proceed to remove "extra suffix" as explained in Khan, Rehman Ullah, Fitri Suraya Mohamad, Muh Inam UlHaq, Shahren Ahmad Zadi Adruce, Philip Nuli Anding, Sajjad Nawaz Khan, and Abdulrazak Yahya Saleh Al-Hababi (2017) <https://ijrest.net/vol-4-issue-12.html> . This package includes a dictionary of Malay words that may be used to perform word stemming, a dataset of Malay stop words, a dataset of sentiment words and a dataset of normalized words.

r-multiactionbutton 1.0.0
Propagated dependencies: r-shiny@1.11.1 r-htmltools@0.5.8.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/stla/multiActionButton
Licenses: GPL 3
Synopsis: Multi Action Button for 'Shiny' Applications
Description:

This package provides a multi action button for usage in shiny applications.

r-mousetrap 3.2.3
Propagated dependencies: r-tidyr@1.3.1 r-scales@1.4.0 r-rlang@1.1.6 r-rcpp@1.1.0 r-rcolorbrewer@1.1-3 r-psych@2.5.6 r-pracma@2.4.6 r-magrittr@2.0.4 r-lifecycle@1.0.4 r-ggplot2@4.0.1 r-fields@17.1 r-fastcluster@1.3.0 r-dplyr@1.1.4 r-diptest@0.77-2 r-cstab@0.2-2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://pascalkieslich.github.io/mousetrap/
Licenses: GPL 3
Synopsis: Process and Analyze Mouse-Tracking Data
Description:

Mouse-tracking, the analysis of mouse movements in computerized experiments, is a method that is becoming increasingly popular in the cognitive sciences. The mousetrap package offers functions for importing, preprocessing, analyzing, aggregating, and visualizing mouse-tracking data. An introduction into mouse-tracking analyses using mousetrap can be found in Wulff, Kieslich, Henninger, Haslbeck, & Schulte-Mecklenbeck (2023) <doi:10.31234/osf.io/v685r> (preprint: <https://osf.io/preprints/psyarxiv/v685r>).

r-matrixsampling 2.0.0
Propagated dependencies: r-keep@1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/stla/matrixsampling
Licenses: GPL 3
Synopsis: Simulations of Matrix Variate Distributions
Description:

This package provides samplers for various matrix variate distributions: Wishart, inverse-Wishart, normal, t, inverted-t, Beta type I, Beta type II, Gamma, confluent hypergeometric. Allows to simulate the noncentral Wishart distribution without the integer restriction on the degrees of freedom.

r-multimode 1.5
Propagated dependencies: r-rootsolve@1.8.2.4 r-ks@1.15.1 r-diptest@0.77-2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://doi.org/10.18637/jss.v097.i09
Licenses: GPL 3
Synopsis: Mode Testing and Exploring
Description:

Different examples and methods for testing (including different proposals described in Ameijeiras-Alonso et al., 2019 <DOI:10.1007/s11749-018-0611-5>) and exploring (including the mode tree, mode forest and SiZer) the number of modes using nonparametric techniques <DOI:10.18637/jss.v097.i09>.

r-mnlr 0.1.0
Propagated dependencies: r-shiny@1.11.1 r-rmarkdown@2.30 r-nnet@7.3-20 r-e1071@1.7-16 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MNLR
Licenses: GPL 2
Synopsis: Interactive Shiny Presentation for Working with Multinomial Logistic Regression
Description:

An interactive presentation on the topic of Multinomial Logistic Regression. It is helpful to those who want to learn Multinomial Logistic Regression quickly and get a hands on experience. The presentation has a template for solving problems on Multinomial Logistic Regression. Runtime examples are provided in the package function as well as at <https://jarvisatharva.shinyapps.io/MultinomPresentation>.

r-mvt 0.3-81
Propagated dependencies: r-fastmatrix@0.6-4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: http://mvt.mat.utfsm.cl/
Licenses: GPL 3
Synopsis: Estimation and Testing for the Multivariate t-Distribution
Description:

Routines to perform estimation and inference under the multivariate t-distribution <doi:10.1007/s10182-022-00468-2>. Currently, the following methodologies are implemented: multivariate mean and covariance estimation, hypothesis testing about equicorrelation and homogeneity of variances, the Wilson-Hilferty transformation, QQ-plots with envelopes and random variate generation.

r-marginme 0.1.0
Propagated dependencies: r-glmmrbase@1.1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/samuel-watson/marginme
Licenses: GPL 2+
Synopsis: Estimation of Relative Risks, Risk Differences, and Marginal Effects from Mixed Models Using Marginal Standardization
Description:

Functionality to estimate relative risks, risk differences, and partial effects from mixed model. Marginalisation over random effect terms is accomplished using Markov Chain Monte Carlo.

r-multbiplotr 25.11.15
Propagated dependencies: r-xtable@1.8-4 r-vcd@1.4-13 r-threeway@1.1.3 r-scales@1.4.0 r-psych@2.5.6 r-polycor@0.8-1 r-mvtnorm@1.3-3 r-mirt@1.45.1 r-matrix@1.7-4 r-mass@7.3-65 r-lattice@0.22-7 r-knitr@1.50 r-hmisc@5.2-4 r-gplots@3.2.0 r-gparotation@2025.3-1 r-geometry@0.5.2 r-dunn-test@1.3.6 r-deldir@2.0-4 r-dae@3.2.32 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MultBiplotR
Licenses: GPL 2+
Synopsis: Multivariate Analysis Using Biplots in R
Description:

Several multivariate techniques from a biplot perspective. It is the translation (with many improvements) into R of the previous package developed in Matlab'. The package contains some of the main developments of my team during the last 30 years together with some more standard techniques. Package includes: Classical Biplots, HJ-Biplot, Canonical Biplots, MANOVA Biplots, Correspondence Analysis, Canonical Correspondence Analysis, Canonical STATIS-ACT, Logistic Biplots for binary and ordinal data, Multidimensional Unfolding, External Biplots for Principal Coordinates Analysis or Multidimensional Scaling, among many others. References can be found in the help of each procedure.

r-mlmusingr 0.4.0
Propagated dependencies: r-wemix@4.0.3 r-tibble@3.3.0 r-performance@0.15.2 r-nlme@3.1-168 r-matrix@1.7-4 r-magrittr@2.0.4 r-lme4@1.1-37 r-generics@0.1.4 r-dplyr@1.1.4 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/flh3/MLMusingR
Licenses: GPL 2
Synopsis: Practical Multilevel Modeling
Description:

Convenience functions and datasets to be used with Practical Multilevel Modeling using R. The package includes functions for calculating group means, group mean centered variables, and displaying some basic missing data information. A function for computing robust standard errors for linear mixed models based on Liang and Zeger (1986) <doi:10.1093/biomet/73.1.13> and Bell and McCaffrey (2002) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2002002/article/9058-eng.pdf?st=NxMjN1YZ> is included as well as a function for checking for level-one homoskedasticity (Raudenbush & Bryk, 2002, ISBN:076191904X).

r-minimap 0.1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: http://github.com/seankross/minimap
Licenses: Expat
Synopsis: Create Tile Grid Maps
Description:

Create tile grid maps, which are like choropleth maps except each region is represented with equal visual space.

r-meifly 0.3.1
Propagated dependencies: r-plyr@1.8.9 r-mass@7.3-65 r-leaps@3.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/hadley/meifly
Licenses: Expat
Synopsis: Interactive Model Exploration using 'GGobi'
Description:

Exploratory model analysis with <http://ggobi.org>. Fit and graphical explore ensembles of linear models.

r-mgwrhw 1.1.1.5
Propagated dependencies: r-tidyr@1.3.1 r-spgwr@0.6-37 r-sf@1.0-23 r-psych@2.5.6 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mgwrhw
Licenses: GPL 3
Synopsis: Displays GWR (Geographically Weighted Regression) and Mixed GWR Output and Map
Description:

Display processing results using the GWR (Geographically Weighted Regression) method, display maps, and show the results of the Mixed GWR (Mixed Geographically Weighted Regression) model which automatically selects global variables based on variability between regions. This function refers to Yasin, & Purhadi. (2012). "Mixed Geographically Weighted Regression Model (Case Study the Percentage of Poor Households in Mojokerto 2008)". European Journal of Scientific Research, 188-196. <https://www.researchgate.net/profile/Hasbi-Yasin-2/publication/289689583_Mixed_geographically_weighted_regression_model_case_study_The_percentage_of_poor_households_in_Mojokerto_2008/links/58e46aa40f7e9bbe9c94d641/Mixed-geographically-weighted-regression-model-case-study-The-percentage-of-poor-households-in-Mojokerto-2008.pdf>.

r-mestim 0.2.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=Mestim
Licenses: FSDG-compatible
Synopsis: Computes the Variance-Covariance Matrix of Multidimensional Parameters Using M-Estimation
Description:

This package provides a flexible framework for estimating the variance-covariance matrix of estimated parameters. Estimation relies on unbiased estimating functions to compute the empirical sandwich variance. (i.e., M-estimation in the vein of Tsiatis et al. (2019) <doi:10.1201/9780429192692>.

r-md2sample 1.0.0
Propagated dependencies: r-rcpp@1.1.0 r-mvtnorm@1.3-3 r-microbenchmark@1.5.0 r-lsa@0.73.3 r-igraph@2.2.1 r-gtests@0.2 r-fnn@1.1.4.1 r-copula@1.1-6 r-ball@1.3.13 r-ade4@1.7-23
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MD2sample
Licenses: GPL 2+
Synopsis: Various Methods for the Two Sample Problem in D>1 Dimensions
Description:

The routine twosample_test() in this package runs the two-sample test using various test statistic for multivariate data. The user can also run several tests and then find a p value adjusted for simultaneous inference. The p values are found via permutation or via the parametric bootstrap. The routine twosample_power() allows the estimation of the power of the tests. The routine run.studies() allows a user to quickly study the power of a new method and how it compares to those included in the package. For details of the methods and references see the included vignettes.

r-miceadds 3.18-36
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mitools@2.4 r-mice@3.18.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/alexanderrobitzsch/miceadds
Licenses: GPL 2+
Synopsis: Some Additional Multiple Imputation Functions, Especially for 'mice'
Description:

This package contains functions for multiple imputation which complements existing functionality in R. In particular, several imputation methods for the mice package (van Buuren & Groothuis-Oudshoorn, 2011, <doi:10.18637/jss.v045.i03>) are implemented. Main features of the miceadds package include plausible value imputation (Mislevy, 1991, <doi:10.1007/BF02294457>), multilevel imputation for variables at any level or with any number of hierarchical and non-hierarchical levels (Grund, Luedtke & Robitzsch, 2018, <doi:10.1177/1094428117703686>; van Buuren, 2018, Ch.7, <doi:10.1201/9780429492259>), imputation using partial least squares (PLS) for high dimensional predictors (Robitzsch, Pham & Yanagida, 2016), nested multiple imputation (Rubin, 2003, <doi:10.1111/1467-9574.00217>), substantive model compatible imputation (Bartlett et al., 2015, <doi:10.1177/0962280214521348>), and features for the generation of synthetic datasets (Reiter, 2005, <doi:10.1111/j.1467-985X.2004.00343.x>; Nowok, Raab, & Dibben, 2016, <doi:10.18637/jss.v074.i11>).

r-mdgc 0.1.7
Propagated dependencies: r-testthat@3.3.0 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-psqn@0.3.2 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/boennecd/mdgc
Licenses: GPL 2
Synopsis: Missing Data Imputation Using Gaussian Copulas
Description:

This package provides functions to impute missing values using Gaussian copulas for mixed data types as described by Christoffersen et al. (2021) <arXiv:2102.02642>. The method is related to Hoff (2007) <doi:10.1214/07-AOAS107> and Zhao and Udell (2019) <arXiv:1910.12845> but differs by making a direct approximation of the log marginal likelihood using an extended version of the Fortran code created by Genz and Bretz (2002) <doi:10.1198/106186002394> in addition to also support multinomial variables.

r-mvglmmrank 1.2-4
Propagated dependencies: r-numderiv@2016.8-1.1 r-matrix@1.7-4 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mvglmmRank
Licenses: GPL 2
Synopsis: Multivariate Generalized Linear Mixed Models for Ranking Sports Teams
Description:

Maximum likelihood estimates are obtained via an EM algorithm with either a first-order or a fully exponential Laplace approximation as documented by Broatch and Karl (2018) <doi:10.48550/arXiv.1710.05284>, Karl, Yang, and Lohr (2014) <doi:10.1016/j.csda.2013.11.019>, and by Karl (2012) <doi:10.1515/1559-0410.1471>. Karl and Zimmerman <doi:10.1016/j.jspi.2020.06.004> use this package to illustrate how the home field effect estimator from a mixed model can be biased under nonrandom scheduling.

r-metarnaseq 1.0.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaRNASeq
Licenses: GPL 2+ GPL 3+
Synopsis: Meta-Analysis of RNA-Seq Data
Description:

Implementation of two p-value combination techniques (inverse normal and Fisher methods). A vignette is provided to explain how to perform a meta-analysis from two independent RNA-seq experiments.

r-mully 2.1.38
Propagated dependencies: r-rgl@1.3.31 r-randomcolor@1.1.0.1 r-igraph@2.2.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/frankkramer-lab/mully
Licenses: GPL 2+
Synopsis: Create, Modify and Visualize Multi-Layered Networks
Description:

Allows the user to create graphs with multiple layers. The user can also modify the layers, the nodes, and the edges. The graph can also be visualized. Zaynab Hammoud and Frank Kramer (2018) <doi:10.3390/genes9110519>. More about multilayered graphs and their usage can be found in our review paper: Zaynab Hammoud and Frank Kramer (2020) <doi:10.1186/s41044-020-00046-0>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208