Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this package, we present the multivariate MArginal ePIstasis Test ('mvMAPIT') â a multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact â thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search based methods. Our proposed mvMAPIT builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate mvMAPIT as a multivariate linear mixed model and develop a multi-trait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. Crawford et al. (2017) <doi:10.1371/journal.pgen.1006869>. Stamp et al. (2023) <doi:10.1093/g3journal/jkad118>.
This package provides a computational method developed for model-based analysis of alternative polyadenylation (APA) using 3 end-linked reads. It accurately assigns 3 RNA-seq reads to polyA sites through statistical modeling, and generates multiple statistics for APA analysis. Please also see Li WV, Zheng D, Wang R, Tian B (2021) <doi:10.1186/s13059-021-02429-5>.
Efficient way to design and conduct psychological experiments for testing the performance of large language models. It simplifies the process of setting up experiments and data collection via language modelsâ API, facilitating a smooth workflow for researchers in the field of machine behaviour.
Facilitates performing matching adjusted indirect comparison (MAIC) analysis where the endpoint of interest is either time-to-event (e.g. overall survival) or binary (e.g. objective tumor response). The method is described by Signorovitch et al (2012) <doi:10.1016/j.jval.2012.05.004>.
Data sets from a variety of biological sample matrices, analysed using a number of mass spectrometry based metabolomic analytical techniques. The example data sets are stored remotely using GitHub releases <https://github.com/aberHRML/metaboData/releases> which can be accessed from R using the package. The package also includes the abr1 FIE-MS data set from the FIEmspro package <https://users.aber.ac.uk/jhd/> <doi:10.1038/nprot.2007.511>.
Simulate a (bivariate) multivariate renewal Hawkes (MRHawkes) self-exciting process, with given immigrant hazard rate functions and offspring density function. Calculate the likelihood of a MRHawkes process with given hazard rate functions and offspring density function for an (increasing) sequence of event times. Calculate the Rosenblatt residuals of the event times. Predict future event times based on observed event times up to a given time. For details see Stindl and Chen (2018) <doi:10.1016/j.csda.2018.01.021>.
Various methods for multivariate outlier detection: arw, a Mahalanobis-type method with an adaptive outlier cutoff value; locout, a method incorporating local neighborhood; pcout, a method for high-dimensional data; mvoutlier.CoDa, a method for compositional data. References are provided in the corresponding help files.
Based on the work of Curi, Converse, Hajewski, and Oliveira (2019) <doi:10.1109/IJCNN.2019.8852333>. This package provides easy-to-use functions which create a variational autoencoder (VAE) to be used for parameter estimation in Item Response Theory (IRT) - namely the Multidimensional Logistic 2-Parameter (ML2P) model. To use a neural network as such, nontrivial modifications to the architecture must be made, such as restricting the nonzero weights in the decoder according to some binary matrix Q. The functions in this package allow for straight-forward construction, training, and evaluation so that minimal knowledge of tensorflow or keras is required.
Software to aid in modeling and analyzing mass-spectrometry-based proteome melting data. Quantitative data is imported and normalized and thermal behavior is modeled at the protein level. Methods exist for normalization, modeling, visualization, and export of results. For a general introduction to MS-based thermal profiling, see Savitski et al. (2014) <doi:10.1126/science.1255784>.
Uses dplyr and tidyeval to fit statistical models inside the database. It currently supports KMeans and linear regression models.
Inference of Multiscale graphical models with neighborhood selection approach. The method is based on solving a convex optimization problem combining a Lasso and fused-group Lasso penalties. This allows to infer simultaneously a conditional independence graph and a clustering partition. The optimization is based on the Continuation with Nesterov smoothing in a Shrinkage-Thresholding Algorithm solver (Hadj-Selem et al. 2018) <doi:10.1109/TMI.2018.2829802> implemented in python.
An extended version of the nonparametric Bayesian monotonic regression procedure described in Saarela & Arjas (2011) <DOI:10.1111/j.1467-9469.2010.00716.x>, allowing for multiple additive monotonic components in the linear predictor, and time-to-event outcomes through case-base sampling. The extension and its applications, including estimation of absolute risks, are described in Saarela & Arjas (2015) <DOI:10.1111/sjos.12125>. The package also implements the nonparametric ordinal regression model described in Saarela, Rohrbeck & Arjas <DOI:10.1214/22-BA1310>.
This package provides a flexible framework for estimating the variance-covariance matrix of estimated parameters. Estimation relies on unbiased estimating functions to compute the empirical sandwich variance. (i.e., M-estimation in the vein of Tsiatis et al. (2019) <doi:10.1201/9780429192692>.
Relatively easy access is provided to 2023 version of the Maddison project data downloaded 2025-08-28. This project collates all the credible data on population and GDP for 169 countries, with some dating back to the year 1 of the current era. One function makes it easy to find the leaders for each year, allowing users to delete countries like OPEC with narrow economies to focus on technology leaders. Another function makes it easy to plot data for only selected countries or years. Another function makes it relatively easy to obtain references to the original sources, which must be cited per the copyright rules of the Maddison Project for different uses of their data.
Clustering of data under a non-ignorable missingness mechanism. Clustering is achieved by a semi-parametric mixture model and missingness is managed by using the pattern-mixture approach. More details of the approach are available in Du Roy de Chaumaray et al. (2020) <arXiv:2009.07662>.
Simulate Mediterranean forest functioning and dynamics using cohort-based description of vegetation [De Caceres et al. (2015) <doi:10.1016/j.agrformet.2015.06.012>; De Caceres et al. (2021) <doi:10.1016/j.agrformet.2020.108233>].
This package implements multivariate Fay-Herriot models for small area estimation. It uses empirical best linear unbiased prediction (EBLUP) estimator. Multivariate models consider the correlation of several target variables and borrow strength from auxiliary variables to improve the effectiveness of a domain sample size. Models which accommodated by this package are univariate model with several target variables (model 0), multivariate model (model 1), autoregressive multivariate model (model 2), and heteroscedastic autoregressive multivariate model (model 3). Functions provide EBLUP estimators and mean squared error (MSE) estimator for each model. These models were developed by Roberto Benavent and Domingo Morales (2015) <doi:10.1016/j.csda.2015.07.013>.
Computes the Nelson-Aalen estimator of the cumulative transition hazard for arbitrary Markov multistate models <ISBN:978-0-387-68560-1>.
This package provides functions similar to the SAS macros previously provided to accompany Collins, Dziak, and Li (2009) <DOI:10.1037/a0015826> and Dziak, Nahum-Shani, and Collins (2012) <DOI:10.1037/a0026972>, papers which outline practical benefits and challenges of factorial and fractional factorial experiments for scientists interested in developing biological and/or behavioral interventions, especially in the context of the multiphase optimization strategy (see Collins, Kugler & Gwadz 2016) <DOI:10.1007/s10461-015-1145-4>. The package currently contains three functions. First, RelativeCosts1() draws a graph of the relative cost of complete and reduced factorial designs versus other alternatives. Second, RandomAssignmentGenerator() returns a dataframe which contains a list of random numbers that can be used to conveniently assign participants to conditions in an experiment with many conditions. Third, FactorialPowerPlan() estimates the power, detectable effect size, or required sample size of a factorial or fractional factorial experiment, for main effects or interactions, given several possible choices of effect size metric, and allowing pretests and clustering.
Mass-balance-adjusted Regression algorithm for streamflow reconstruction at sub-annual resolution (e.g., seasonal or monthly). The algorithm implements a penalty term to minimize the differences between the total sub-annual flows and the annual flow. The method is described in Nguyen et al (2020) <DOI:10.1002/essoar.10504791.1>.
This package provides functions to read in and manipulate air quality model output from Models3-formatted files. This format is used by the Community Multiscale Air Quality (CMAQ) model.
Quantifies ecological memory in long time-series using Random Forest models ('Benito', Gil-Romera', and Birks 2019 <doi:10.1111/ecog.04772>) fitted with ranger (Wright and Ziegler 2017 <doi:10.18637/jss.v077.i01>). Ecological memory is assessed by modeling a response variable as a function of lagged predictors, distinguishing endogenous memory (lagged response) from exogenous memory (lagged environmental drivers). Designed for palaeoecological datasets and simulated pollen curves from virtualPollen', but applicable to any long time-series with environmental drivers and a biotic response.
This package provides a collection of functions to download and process weather data from the Oklahoma Mesonet <https://mesonet.org>. Functions are available for downloading station metadata, downloading Mesonet time series (MTS) files, importing MTS files into R, and converting soil temperature change measurements into soil matric potential and volumetric soil moisture.
This package provides a mechanism to plot an interactive map using Mapbox GL (<https://docs.mapbox.com/mapbox-gl-js/api/>), a javascript library for interactive maps, and Deck.gl (<https://deck.gl/>), a javascript library which uses WebGL for visualising large data sets.