Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Tidied data from the ASA 2006 data expo, as well as a number of useful other related data sets.
Model-based clustering of high-dimensional non-negative data that follow Generalized Negative Binomial distribution. All functions in this package applies to either continuous or integer data. Correlation between variables are allowed, while samples are assumed to be independent.
This package provides a fast negative binomial mixed model for conducting association analysis of multi-subject single-cell data. It can be used for identifying marker genes, differential expression and co-expression analyses. The model includes subject-level random effects to account for the hierarchical structure in multi-subject single-cell data. See He et al. (2021) <doi:10.1038/s42003-021-02146-6>.
Noninferiority tests for difference in failure rates at a prespecified control rate or prespecified time. For details, see Fay and Follmann, 2016 <DOI:10.1177/1740774516654861>.
This package provides a simple function for easier package loading and auto-installation.
Estimating the number of essential genes in a genome on the basis of data from a random transposon mutagenesis experiment, through the use of a Gibbs sampler. Lamichhane et al. (2003) <doi:10.1073/pnas.1231432100>.
Validate, format and compare identification numbers used in Brazil. These numbers are used to identify individuals (CPF), vehicles (RENAVAN), companies (CNPJ) and etc. Functions to format, validate and compare these numbers have been implemented in a vectorized way in order to speed up validations and comparisons in big datasets.
This package provides a multi-core R package that contains a set of tools based on copula graphical models for accomplishing the three interrelated goals in genetics and genomics in an unified way: (1) linkage map construction, (2) constructing linkage disequilibrium networks, and (3) exploring high-dimensional genotype-phenotype network and genotype- phenotype-environment interactions networks. The netgwas package can deal with biparental inbreeding and outbreeding species with any ploidy level, namely diploid (2 sets of chromosomes), triploid (3 sets of chromosomes), tetraploid (4 sets of chromosomes) and so on. We target on high-dimensional data where number of variables p is considerably larger than number of sample sizes (p >> n). The computations is memory-optimized using the sparse matrix output. The netgwas implements the methodological developments in Behrouzi and Wit (2017) <doi:10.1111/rssc.12287> and Behrouzi and Wit (2017) <doi:10.1093/bioinformatics/bty777>.
This shows how NONMEM(R) software works. NONMEM's classical estimation methods like First Order(FO) approximation', First Order Conditional Estimation(FOCE)', and Laplacian approximation are explained.
Fit multinomial logistic regression with a penalty on the nuclear norm of the estimated regression coefficient matrix, using proximal gradient descent.
For use in summary functions to omit missing values conditionally using specified checks.
This package provides a graphical display of results from network meta-analysis (NMA). It is suitable for outcomes like odds ratio (OR), risk ratio (RR), risk difference (RD) and standardized mean difference (SMD). It also has an option to visually display and compare the surface under the cumulative ranking (SUCRA) of different treatments.
Digital map data of Japan for choropleth mapping, including a circle cartogram.
This package provides tools to create time series and geometry NetCDF files.
Density, distribution function, quantile function and random generation for the 3D Navarro, Frenk & White (NFW) profile. For details see Robotham & Howlett (2018) <arXiv:1805.09550>.
This package implements calculation of probability density function, cumulative distribution function, equicoordinate quantile function and survival function, and random numbers generation for the following multivariate distributions: Lomax (Pareto Type II), generalized Lomax, Mardiaâ s Pareto of Type I, Logistic, Burr, Cook-Johnsonâ s uniform, F and Inverted Beta. See Tapan Nayak (1987) <doi:10.2307/3214068>.
Basic implementation of a Gibbs sampler for a Chinese Restaurant Process along with some visual aids to help understand how the sampling works. This is developed as part of a postgraduate school project for an Advanced Bayesian Nonparametric course. It is inspired by Tamara Broderick's presentation on Nonparametric Bayesian statistics given at the Simons institute.
NNS (Nonlinear Nonparametric Statistics) leverages partial moments â the fundamental elements of variance that asymptotically approximate the area under f(x) â to provide a robust foundation for nonlinear analysis while maintaining linear equivalences. NNS delivers a comprehensive suite of advanced statistical techniques, including: Numerical integration, Numerical differentiation, Clustering, Correlation, Dependence, Causal analysis, ANOVA, Regression, Classification, Seasonality, Autoregressive modeling, Normalization, Stochastic dominance and Advanced Monte Carlo sampling. All routines based on: Viole, F. and Nawrocki, D. (2013), Nonlinear Nonparametric Statistics: Using Partial Moments (ISBN: 1490523995).
Estimate the correlation between two NIfTI images across random parcellations of the images (Fortea et al., under review). This approach overcomes the problems of both voxel-based correlations (neighbor voxels may be spatially dependent) and atlas-based correlations (the correlation may depend on the atlas used).
Non-linear least squares regression with the Levenberg-Marquardt algorithm using multiple starting values for increasing the chance that the minimum found is the global minimum.
This data package contains the Item Response Theory (IRT) parameters for the National Center for Education Statistics (NCES) items used on the National Assessment of Education Progress (NAEP) from 1990 to 2015. The values in these tables are used along with NAEP data to turn student item responses into scores and include information about item difficulty, discrimination, and guessing parameter for 3 parameter logit (3PL) items. Parameters for Generalized Partial Credit Model (GPCM) items are also included. The adjustments table contains the information regarding the treatment of items (e.g., deletion of an item or a collapsing of response categories), when these items did not appear to fit the item response models used to describe the NAEP data. Transformation constants change the score estimates that are obtained from the IRT scaling program to the NAEP reporting metric. Values from the years 2000 - 2013 were taken from the NCES website <https://nces.ed.gov/nationsreportcard/> and values from 1990 - 1998 and 2015 were extracted from their NAEP data files. All subtest names were reduced and homogenized to one word (e.g. "Reading to gain information" became "information"). The various subtest names for univariate transformation constants were all homogenized to "univariate".
Designed to replace the tables which were in the back of the first two editions of Hollander and Wolfe - Nonparametric Statistical Methods. Exact procedures are performed when computationally possible. Monte Carlo and Asymptotic procedures are performed otherwise. For those procedures included in the base packages, our code simply provides a wrapper to standardize the output with the other procedures in the package.
Features tools for the network data analysis and community detection. Provides multiple methods for fitting, model selection and goodness-of-fit testing in degree-corrected stochastic blocks models. Most of the computations are fast and scalable for sparse networks, esp. for Poisson versions of the models. Implements the following: Amini, Chen, Bickel and Levina (2013) <doi:10.1214/13-AOS1138> Bickel and Sarkar (2015) <doi:10.1111/rssb.12117> Lei (2016) <doi:10.1214/15-AOS1370> Wang and Bickel (2017) <doi:10.1214/16-AOS1457> Zhang and Amini (2020) <arXiv:2012.15047> Le and Levina (2022) <doi:10.1214/21-EJS1971>.
This package provides functions for classifying sparseness in 2 x 2 categorical data where one or more cells have zero counts. The classification uses three widely applied summary measures: Risk Difference (RD), Relative Risk (RR), and Odds Ratio (OR). Helps in selecting suitable continuity corrections for zero cells in multi-centre or meta-analysis studies. Also supports sensitivity analysis and can detect phenomena such as Simpson's paradox. The methodology is based on Subbiah and Srinivasan (2008) <doi:10.1016/j.spl.2008.06.023>.