Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for reading and writing NIfTI-1.1 (NII) files, including optimized voxelwise read/write operations and a simplified method to write dataframes to NII. Specification of the NIfTI-1.1 format can be found here <https://nifti.nimh.nih.gov/nifti-1>. Scientific publication first using these tools Koscik TR, Man V, Jahn A, Lee CH, Cunningham WA (2020) <doi:10.1016/j.neuroimage.2020.116764> "Decomposing the neural pathways in a simple, value-based choice." Neuroimage, 214, 116764.
This package provides methods and tools for forecasting univariate time series using the NARFIMA (Neural AutoRegressive Fractionally Integrated Moving Average) model. It combines neural networks with fractional differencing to capture both nonlinear patterns and long-term dependencies. The NARFIMA model supports seasonal adjustment, Box-Cox transformations, optional exogenous variables, and the computation of prediction intervals. In addition to the NARFIMA model, this package provides alternative forecasting models including NARIMA (Neural ARIMA), NBSTS (Neural Bayesian Structural Time Series), and NNaive (Neural Naive) for performance comparison across different modeling approaches. The methods are based on algorithms introduced by Chakraborty et al. (2025) <doi:10.48550/arXiv.2509.06697>.
Uses a modified lifting algorithm on which it builds the nondecimated lifting transform. It has applications in wavelet shrinkage.
Clinical reporting figures require to use consistent colors and configurations. As a part of the Roche open-source clinical reporting project, namely the NEST project, the nestcolor package specifies the color code and default theme with specifying ggplot2 theme parameters. Users can easily customize color and theme settings before using the reset of NEST packages to ensure consistent settings in both static and interactive output at the downstream.
An n-gram is a sequence of n "words" taken, in order, from a body of text. This is a collection of utilities for creating, displaying, summarizing, and "babbling" n-grams. The tokenization and "babbling" are handled by very efficient C code, which can even be built as its own standalone library. The babbler is a simple Markov chain. The package also offers a vignette with complete example workflows and information about the utilities offered in the package.
This package provides access to the Native Status Resolver (NSR) <https://github.com/ojalaquellueva/nsr> API through R. The user supplies plant taxonomic names and political divisions and the package returns information about their likely native status (e.g., native, non-native,endemic), along with information on how those decisions were made.
This package provides functions for reading cancer record files which follow a format defined by the North American Association of Central Cancer Registries (NAACCR).
Replacement for nls() tools for working with nonlinear least squares problems. The calling structure is similar to, but much simpler than, that of the nls() function. Moreover, where nls() specifically does NOT deal with small or zero residual problems, nlmrt is quite happy to solve them. It also attempts to be more robust in finding solutions, thereby avoiding singular gradient messages that arise in the Gauss-Newton method within nls(). The Marquardt-Nash approach in nlmrt generally works more reliably to get a solution, though this may be one of a set of possibilities, and may also be statistically unsatisfactory. Added print and summary as of August 28, 2012.
Collection of functions designed to calculate numerical standard error (NSE) of univariate time series as described in Ardia et al. (2018) <doi:10.1515/jtse-2017-0011> and Ardia and Bluteau (2017) <doi:10.21105/joss.00172>.
Estimates of coefficients of lasso penalized linear regression and generalized linear models subject to non-negativity constraints on the parameters using multiplicative iterative algorithm. Entire regularization path for a sequence of lambda values can be obtained. Functions are available for creating plots of regularization path, cross validation and estimating coefficients at a given lambda value. There is also provision for obtaining standard error of coefficient estimates.
Network Pre-Processing and normalization. Methods for normalizing graphs, including Chua normalization, Laplacian normalization, Binary magnification, min-max normalization and others. Methods to sparsify adjacency matrices. Methods for graph pre-processing and for filtering edges of the graph.
Fast and Accurate Trisomy Prediction in Non-Invasive Prenatal Testing.
Snow water equivalent is modeled with the process based models delta.snow and HS2SWE and empirical regression, which use relationships between density and diverse at-site parameters. The methods are described in Winkler et al. (2021) <doi:10.5194/hess-25-1165-2021>, Magnusson et al. (2025) <doi:10.1016/j.coldregions.2025.104435>, Guyennon et al. (2019) <doi:10.1016/j.coldregions.2019.102859>, Pistocchi (2016) <doi:10.1016/j.ejrh.2016.03.004>, Jonas et al. (2009) <doi:10.1016/j.jhydrol.2009.09.021> and Sturm et al. (2010) <doi:10.1175/2010JHM1202.1>.
In the working paper titled "Why You Should Never Use the Hodrick-Prescott Filter", James D. Hamilton proposes a new alternative to economic time series filtering. The neverhpfilter package provides functions and data for reproducing his work. Hamilton (2017) <doi:10.3386/w23429>.
Conduct a noncompartmental analysis with industrial strength. Some features are 1) Use of CDISC SDTM terms 2) Automatic or manual slope selection 3) Supporting both linear-up linear-down and linear-up log-down method 4) Interval(partial) AUCs with linear or log interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Assist novice developers when preparing a single package or a set of integrated packages to submit to CRAN. Automate the following individual or batch processing: check local source packages; build local .tar.gz source files; install packages from local .tar.gz files; detect conflicts between function names in the environment.
The ntfy (pronounce: notify) service is a simple HTTP-based pub-sub notification service. It allows you to send notifications to your phone or desktop via scripts from any computer, entirely without signup, cost or setup. It's also open source if you want to run your own. Visit <https://ntfy.sh> for more details.
This package provides a tool set for food information and dietary assessment. It uses food composition data from several reference databases, including: USDA (United States), CIQUAL (France), BEDCA (Spain), CNF (Canada) and STFCJ (Japan). NutrienTrackeR calculates the intake levels for both macronutrient and micronutrients, and compares them with the recommended dietary allowances (RDA). It includes a number of visualization tools, such as time series plots of nutrient intake, and pie-charts showing the main foods contributing to the intake level of a given nutrient. A shiny app exposing the main functionalities of the package is also provided.
Counts syllables in character vectors for English words. Imputes syllables as the number of vowel sequences for words not found.
Illustrate graphically the most common Null Hypothesis Significance Testing procedures. More specifically, this package provides functions to plot Chi-Squared, F, t (one- and two-tailed) and z (one- and two-tailed) tests, by plotting the probability density under the null hypothesis as a function of the different test statistic values. Although highly flexible (color theme, fonts, etc.), only the minimal number of arguments (observed test statistic, degrees of freedom) are necessary for a clear and useful graph to be plotted, with the observed test statistic and the p value, as well as their corresponding value labels. The axes are automatically scaled to present the relevant part and the overall shape of the probability density function. This package is especially intended for education purposes, as it provides a helpful support to help explain the Null Hypothesis Significance Testing process, its use and/or shortcomings.
This package implements some risk measures for (financial) networks, such as DebtRank, Impact Susceptibility, Impact Diffusion and Impact Fluidity.
To estimate ecological stochasticity in community assembly. Understanding the community assembly mechanisms controlling biodiversity patterns is a central issue in ecology. Although it is generally accepted that both deterministic and stochastic processes play important roles in community assembly, quantifying their relative importance is challenging. The new index, normalized stochasticity ratio (NST), is to estimate ecological stochasticity, i.e. relative importance of stochastic processes, in community assembly. With functions in this package, NST can be calculated based on different similarity metrics and/or different null model algorithms, as well as some previous indexes, e.g. previous Stochasticity Ratio (ST), Standard Effect Size (SES), modified Raup-Crick metrics (RC). Functions for permutational test and bootstrapping analysis are also included. Previous ST is published by Zhou et al (2014) <doi:10.1073/pnas.1324044111>. NST is modified from ST by considering two alternative situations and normalizing the index to range from 0 to 1 (Ning et al 2019) <doi:10.1073/pnas.1904623116>. A modified version, MST, is a special case of NST, used in some recent or upcoming publications, e.g. Liang et al (2020) <doi:10.1016/j.soilbio.2020.108023>. SES is calculated as described in Kraft et al (2011) <doi:10.1126/science.1208584>. RC is calculated as reported by Chase et al (2011) <doi:10.1890/ES10-00117.1> and Stegen et al (2013) <doi:10.1038/ismej.2013.93>. Version 3 added NST based on phylogenetic beta diversity, used by Ning et al (2020) <doi:10.1038/s41467-020-18560-z>.
An adaptation of Non-dominated Sorting Genetic Algorithm III for multi objective feature selection tasks. Non-dominated Sorting Genetic Algorithm III is a genetic algorithm that solves multiple optimization problems simultaneously by applying a non-dominated sorting technique. It uses a reference points based selection operator to explore solution space and preserve diversity. See the original paper by K. Deb and H. Jain (2014) <DOI:10.1109/TEVC.2013.2281534> for a detailed description.
Computes the pdf, cdf, quantile function and generating random numbers for neutrosophic distributions. This family have been developed by different authors in the recent years. See Patro and Smarandache (2016) <doi:10.5281/zenodo.571153> and Rao et al (2023) <doi:10.5281/zenodo.7832786>.