Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Optimal group-sequential designs minimise some function of the expected and maximum sample size whilst controlling the type I error rate and power at a specified level. OptGS provides functions to quickly search for near-optimal group-sequential designs for normally distributed outcomes. The methods used are described in Wason, JMS (2015) <doi:10.18637/jss.v066.i02>.
Computes A-, MV-, D- and E-optimal or near-optimal row-column designs for two-colour cDNA microarray experiments using the linear fixed effects and mixed effects models where the interest is in a comparison of all pairwise treatment contrasts. The algorithms used in this package are based on the array exchange and treatment exchange algorithms adopted from Debusho, Gemechu and Haines (2018) <doi:10.1080/03610918.2018.1429617> algorithms after adjusting for the row-column designs setup. The package also provides an optional method of using the graphical user interface (GUI) R package tcltk to ensure that it is user friendly.
Convenient download functions enabling access Open Source Asset Pricing (OpenAP) data. This package enables users to download predictor portfolio returns (over 200 cross-sectional predictors with multiple portfolio construction methods) and firm characteristics (over 200 characteristics replicated from the academic asset pricing literature). Center for Research in Security Prices (CRSP)-based variables such as Price, Size, and Short-term Reversal can be downloaded with a Wharton Research Data Services (WRDS, <https://wrds-www.wharton.upenn.edu/>) subscription. For a full list of what is available, see <https://www.openassetpricing.com/>.
The online principal component method can process the online data set. The philosophy of the package is described in Guo G. (2018) <doi:10.1080/10485252.2018.1531130>.
Simultaneously evaluate multiple ordinal outcome measures. Applied data analysts in particular are faced with uncertainty in choosing appropriate statistical tests for ordinal data. The included shiny application allows users to simulate outcomes given different ordinal data distributions.
Ordered homogeneity pursuit lasso (OHPL) algorithm for group variable selection proposed in Lin et al. (2017) <DOI:10.1016/j.chemolab.2017.07.004>. The OHPL method exploits the homogeneity structure in high-dimensional data and enjoys the grouping effect to select groups of important variables automatically. This feature makes it particularly useful for high-dimensional datasets with strongly correlated variables, such as spectroscopic data.
This package provides unified workflows for quality control, normalization, and visualization of proteomic and metabolomic data. The package simplifies preprocessing through automated imputation, scaling, and principal component analysis (PCA)-based exploratory analysis, enabling researchers to prepare omics datasets efficiently for downstream statistical and machine learning analyses.
This package provides a suite of functions for the design of case-control and two-phase studies, and the analysis of data that arise from them. Functions in this packages provides Monte Carlo based evaluation of operating characteristics such as powers for estimators of the components of a logistic regression model. For additional detail see: Haneuse S, Saegusa T and Lumley T (2011)<doi:10.18637/jss.v043.i11>.
This package provides a general framework for the application of cross-validation schemes to particular functions. By allowing arbitrary lists of results, origami accommodates a range of cross-validation applications. This implementation was first described by Coyle and Hejazi (2018) <doi:10.21105/joss.00512>.
Different measures which can be used to quantify similarities between regions. These measures are isonymy, isonymy between, Lasker distance, coefficients of Hedrick and Nei. In addition, it calculates biodiversity indices such as Margalef, Menhinick, Simpson, Shannon, Shannon-Wiener, Sheldon, Heip, Hill Numbers, Geometric Mean and Cressie and Read statistics.
Aims to support all features of the system credential store, including non-portable ones. Supports Keychain on macOS', and Credential Manager on Windows'. See the keyring package if you need a portable API'.
Growing collection of helper functions for point pattern analysis. Most functions are designed to work with the spatstat (<http://spatstat.org>) package. The focus of most functions are either null models or summary functions for spatial point patterns. For a detailed description of all null models and summary functions, see Wiegand and Moloney (2014, ISBN:9781420082548).
Fits two-dimensional data by means of orthogonal nonlinear least-squares using Levenberg-Marquardt minimization and provides functionality for fit diagnostics and plotting. Delivers the same results as the ODRPACK Fortran implementation described in Boggs et al. (1989) <doi:10.1145/76909.76913>, but is implemented in pure R.
Geocode with the OpenCage API, either from place name to longitude and latitude (forward geocoding) or from longitude and latitude to the name and address of a location (reverse geocoding), see <https://opencagedata.com/>.
This package provides a decision support tool for prioritizing conservation projects. Prioritizations can be developed by maximizing expected feature richness, expected phylogenetic diversity, the number of features that meet persistence targets, or identifying a set of projects that meet persistence targets for minimal cost. Constraints (e.g. lock in specific actions) and feature weights can also be specified to further customize prioritizations. After defining a project prioritization problem, solutions can be obtained using exact algorithms, heuristic algorithms, or random processes. In particular, it is recommended to install the Gurobi optimizer (available from <https://www.gurobi.com>) because it can identify optimal solutions very quickly. Finally, methods are provided for comparing different prioritizations and evaluating their benefits. For more information, see Hanson et al. (2019) <doi:10.1111/2041-210X.13264>.
Generating and validating One-time Password based on Hash-based Message Authentication Code (HOTP) and Time Based One-time Password (TOTP) according to RFC 4226 <https://datatracker.ietf.org/doc/html/rfc4226> and RFC 6238 <https://datatracker.ietf.org/doc/html/rfc6238>.
An optimized method for distribution-preserving class-proportional down-sampling of bio-medical data.
Developed to help researchers who need to model the kinetics of carbon dioxide (CO2) production in alcoholic fermentation of wines, beers and other fermented products. The following models are available for modeling the carbon dioxide production curve as a function of time: 5PL, Gompertz and 4PL. This package has different functions, which applied can: perform the modeling of the data obtained in the fermentation and return the coefficients, analyze the model fit and return different statistical metrics, and calculate the kinetic parameters: Maximum production of carbon dioxide; Maximum rate of production of carbon dioxide; Moment in which maximum fermentation rate occurs; Duration of the latency phase for carbon dioxide production; Carbon dioxide produced until maximum fermentation rate occurs. In addition, a function that generates graphs with the observed and predicted data from the models, isolated and combined, is available. Gava, A., Borsato, D., & Ficagna, E. (2020)."Effect of mixture of fining agents on the fermentation kinetics of base wine for sparkling wine production: Use of methodology for modeling". <doi:10.1016/j.lwt.2020.109660>.
This package provides a framework for fitting adaptive forecasting models. Provides a way to use forecasts as input to models, e.g. weather forecasts for energy related forecasting. The models can be fitted recursively and can easily be setup for updating parameters when new data arrives. See the included vignettes, the website <https://onlineforecasting.org> and the paper "onlineforecast: An R package for adaptive and recursive forecasting" <https://journal.r-project.org/articles/RJ-2023-031/>.
Apache OpenNLP jars and basic English language models.
In biomedical studies, researchers are often interested in assessing the association between one or more ordinal explanatory variables and an outcome variable, at the same time adjusting for covariates of any type. The outcome variable may be continuous, binary, or represent censored survival times. In the absence of a precise knowledge of the response function, using monotonicity constraints on the ordinal variables improves efficiency in estimating parameters, especially when sample sizes are small. This package implements an active set algorithm that efficiently computes such estimators.
This tool was designed to assess the sensitivity of research findings to omitted variables when estimating causal effects using propensity score (PS) weighting. This tool produces graphics and summary results that will enable a researcher to quantify the impact an omitted variable would have on their results. Burgette et al. (2021) describe the methodology behind the primary function in this package, ov_sim. The method is demonstrated in Griffin et al. (2020) <doi:10.1016/j.jsat.2020.108075>.
This package provides a generalised data structure for fast and efficient loading and data munching of sparse omics data. The OmicFlow requires an up-front validated metadata template from the user, which serves as a guide to connect all the pieces together by aligning them into a single object that is defined as an omics class. Once this unified structure is established, users can perform manual subsetting, visualisation, and statistical analysis, or leverage the automated autoFlow method to generate a comprehensive report.
This package provides a database resource that is accessible through the Open Database Connectivity ('ODBC') API. This package uses the Resource model, with URL "resolver" and "client", to dynamically discover and make accessible tables stored in a MS SQL Server database. For more details see Marcon (2021) <doi:10.1371/journal.pcbi.1008880>.