Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Provide functionality for cancer subtyping using nearest centroids or machine learning methods based on TCGA data.
Multiple tools are now available for inferring the personalised germ line set from an adaptive immune receptor repertoire. Output from these tools is converted to a single format and supplemented with rich data such as usage and characterisation of novel germ line alleles. This data can be particularly useful when considering the validity of novel inferences. Use of the analysis provided is described in <doi:10.3389/fimmu.2019.00435>.
Represents the basis functions for B-splines in a simple matrix formulation that facilitates, taking integrals, derivatives, and making orthogonal the basis functions.
Offers a streamlined programmatic interface to Ordnance Survey's British National Grid (BNG) index system, enabling efficient spatial indexing and analysis based on grid references. It supports a range of geospatial applications, including statistical aggregation, data visualisation, and interoperability across datasets. Designed for developers and analysts working with geospatial data in Great Britain, osbng simplifies integration with geospatial workflows and provides intuitive tools for exploring the structure and logic of the BNG system.
An optimized method for distribution-preserving class-proportional down-sampling of bio-medical data.
Combine the air quality data analysis methods of openair with the JavaScript Leaflet (<https://leafletjs.com/>) library. Functionality includes plotting site maps, "directional analysis" figures such as polar plots, and air mass trajectories.
An RStudio addin to assist with removing objects from the global environment. Features include removing objects according to name patterns and object type. During the course of an analysis, temporary objects are often created and this tool assists with removing them quickly. This can be useful when memory management within R is important.
When people make decisions, they may do so using a wide variety of decision rules. The package allows users to easily create obfuscation games to test the obfuscation hypothesis. It provides an easy to use interface and multiple options designed to vary the difficulty of the game and tailor it to the user's needs. For more detail: Chorus et al., 2021, Obfuscation maximization-based decision-making: Theory, methodology and first empirical evidence, Mathematical Social Sciences, 109, 28-44, <doi:10.1016/j.mathsocsci.2020.10.002>.
Data input/output functions for data that conform to the Digital Imaging and Communications in Medicine (DICOM) standard, part of the Rigorous Analytics bundle.
This package provides a framework for the optimization of breeding programs via optimum contribution selection and mate allocation. An easy to use set of function for computation of optimum contributions of selection candidates, and of the population genetic parameters to be optimized. These parameters can be estimated using pedigree or genotype information, and include kinships, kinships at native haplotype segments, and breed composition of crossbred individuals. They are suitable for managing genetic diversity, removing introgressed genetic material, and accelerating genetic gain. Additionally, functions are provided for computing genetic contributions from ancestors, inbreeding coefficients, the native effective size, the native genome equivalent, pedigree completeness, and for preparing and plotting pedigrees. The methods are described in:\n Wellmann, R., and Pfeiffer, I. (2009) <doi:10.1017/S0016672309000202>.\n Wellmann, R., and Bennewitz, J. (2011) <doi:10.2527/jas.2010-3709>.\n Wellmann, R., Hartwig, S., Bennewitz, J. (2012) <doi:10.1186/1297-9686-44-34>.\n de Cara, M. A. R., Villanueva, B., Toro, M. A., Fernandez, J. (2013) <doi:10.1111/mec.12560>.\n Wellmann, R., Bennewitz, J., Meuwissen, T.H.E. (2014) <doi:10.1017/S0016672314000196>.\n Wellmann, R. (2019) <doi:10.1186/s12859-018-2450-5>.
Optimal Subset Cardinality Regression (OSCAR) models offer regularized linear regression using the L0-pseudonorm, conventionally known as the number of non-zero coefficients. The package estimates an optimal subset of features using the L0-penalization via cross-validation, bootstrapping and visual diagnostics. Effective Fortran implementations are offered along the package for finding optima for the DC-decomposition, which is used for transforming the discrete L0-regularized optimization problem into a continuous non-convex optimization task. These optimization modules include DBDC ('Double Bundle method for nonsmooth DC optimization as described in Joki et al. (2018) <doi:10.1137/16M1115733>) and LMBM ('Limited Memory Bundle Method for large-scale nonsmooth optimization as in Haarala et al. (2004) <doi:10.1080/10556780410001689225>). The OSCAR models are comprehensively exemplified in Halkola et al. (2023) <doi:10.1371/journal.pcbi.1010333>). Multiple regression model families are supported: Cox, logistic, and Gaussian.
Primarily devoted to implementing the Univariate Bootstrap (as well as the Traditional Bootstrap). In addition there are multiple functions for DeFries-Fulker behavioral genetics models. The univariate bootstrapping functions, DeFries-Fulker functions, regression and traditional bootstrapping functions form the original core. Additional features may come online later, however this software is a work in progress. For more information about univariate bootstrapping see: Lee and Rodgers (1998) and Beasley et al (2007) <doi:10.1037/1082-989X.12.4.414>.
This package provides functions to access and download data from the Open Case Studies <https://www.opencasestudies.org/> repositories on GitHub <https://github.com/opencasestudies>. Different functions enable users to grab the data they need at different sections in the case study, as well as download the whole case study repository. All the user needs to do is input the name of the case study being worked on. The package relies on the httr::GET() function to access files through the GitHub API. The functions usethis::use_zip() and usethis::create_from_github() are used to clone and/or download the case study repositories. To cite an individual case study, please see the respective README file at <https://github.com/opencasestudies/>. <https://github.com/opencasestudies/ocs-bp-rural-and-urban-obesity> <https://github.com/opencasestudies/ocs-bp-air-pollution> <https://github.com/opencasestudies/ocs-bp-vaping-case-study> <https://github.com/opencasestudies/ocs-bp-opioid-rural-urban> <https://github.com/opencasestudies/ocs-bp-RTC-wrangling> <https://github.com/opencasestudies/ocs-bp-RTC-analysis> <https://github.com/opencasestudies/ocs-bp-youth-disconnection> <https://github.com/opencasestudies/ocs-bp-youth-mental-health> <https://github.com/opencasestudies/ocs-bp-school-shootings-dashboard> <https://github.com/opencasestudies/ocs-bp-co2-emissions> <https://github.com/opencasestudies/ocs-bp-diet>.
This package provides a comprehensive set of helpers that streamline data transmission and processing, making it effortless to interact with the OpenAI API.
Interact seamlessly with Open Target GraphQL endpoint to query and retrieve tidy data tables, facilitating the analysis of gene, disease, drug, and genetic data. For more information about the Open Target API (<https://platform.opentargets.org/api>).
This package provides a programmatic interface to the OpenM++ microsimulation platform (<https://openmpp.org>). The primary goal of this package is to wrap the OpenM++ Web Service (OMS) to provide OpenM++ users a programmatic interface for the R language.
Several function related to Experimental Design are implemented here, see "Optimal Experimental Design with R" by Rasch D. et. al (ISBN 9781439816974).
Given a certain coverage level, obtains simultaneous confidence bands for the survival and cumulative hazard functions such that the area between is minimized. Produces an approximate solution based on local time arguments.
An unofficial wrapper for okx exchange v5 API <https://www.okx.com/docs-v5/en/>, including REST API and WebSocket API.
This package performs one-way tests in independent groups designs including homoscedastic and heteroscedastic tests. These are one-way analysis of variance (ANOVA), Welch's heteroscedastic F test, Welch's heteroscedastic F test with trimmed means and Winsorized variances, Brown-Forsythe test, Alexander-Govern test, James second order test, Kruskal-Wallis test, Scott-Smith test, Box F test, Johansen F test, Generalized tests equivalent to Parametric Bootstrap and Fiducial tests, Alvandi's F test, Alvandi's generalized p-value, approximate F test, B square test, Cochran test, Weerahandi's generalized F test, modified Brown-Forsythe test, adjusted Welch's heteroscedastic F test, Welch-Aspin test, Permutation F test. The package performs pairwise comparisons and graphical approaches. Also, the package includes Student's t test, Welch's t test and Mann-Whitney U test for two samples. Moreover, it assesses variance homogeneity and normality of data in each group via tests and plots (Dag et al., 2018, <https://journal.r-project.org/archive/2018/RJ-2018-022/RJ-2018-022.pdf>).
Obtain optimum block from Non-overlapping Block Bootstrap method.
Offers a rich collection of data focused on cancer research, covering survival rates, genetic studies, biomarkers, and epidemiological insights. Designed for researchers, analysts, and bioinformatics practitioners, the package includes datasets on various cancer types such as melanoma, leukemia, breast, ovarian, and lung cancer, among others. It aims to facilitate advanced research, analysis, and understanding of cancer epidemiology, genetics, and treatment outcomes.
This package provides a set of tools that enables using OxCal from within R. OxCal (<https://c14.arch.ox.ac.uk/oxcal.html>) is a standard archaeological tool intended to provide 14C calibration and analysis of archaeological and environmental chronological information. OxcAAR allows simple calibration with Oxcal and plotting of the results as well as the execution of sophisticated ('OxCal') code and the import of the results of bulk analysis and complex Bayesian sequential calibration.
Interface to make HTTP requests to OpenBlender API services. Go to <https://openblender.io> for more information.