Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The olr function systematically evaluates multiple linear regression models by exhaustively fitting all possible combinations of independent variables against the specified dependent variable. It selects the model that yields the highest adjusted R-squared (by default) or R-squared, depending on user preference. In model evaluation, both R-squared and adjusted R-squared are key metrics: R-squared measures the proportion of variance explained but tends to increase with the addition of predictorsâ regardless of relevanceâ potentially leading to overfitting. Adjusted R-squared compensates for this by penalizing model complexity, providing a more balanced view of fit quality. The goal of olr is to identify the most suitable model that captures the underlying structure of the data while avoiding unnecessary complexity. By comparing both metrics, it offers a robust evaluation framework that balances predictive power with model parsimony. Example Analogy: Imagine a gardener trying to understand what influences plant growth (the dependent variable). They might consider variables like sunlight, watering frequency, soil type, and nutrients (independent variables). Instead of manually guessing which combination works best, the olr function automatically tests every possible combination of predictors and identifies the most effective modelâ based on either the highest R-squared or adjusted R-squared value. This saves the user from trial-and-error modeling and highlights only the most meaningful variables for explaining the outcome. A Python version is also available at <https://pypi.org/project/olr>.
This is a tool to find the optimal rerandomization threshold in non-sequential experiments. We offer three procedures based on assumptions made on the residuals distribution: (1) normality assumed (2) excess kurtosis assumed (3) entire distribution assumed. Illustrations are included. Also included is a routine to unbiasedly estimate Frobenius norms of variance-covariance matrices. Details of the method can be found in "Optimal Rerandomization via a Criterion that Provides Insurance Against Failed Experiments" Adam Kapelner, Abba M. Krieger, Michael Sklar and David Azriel (2020) <arXiv:1905.03337>.
Offers a streamlined programmatic interface to Ordnance Survey's British National Grid (BNG) index system, enabling efficient spatial indexing and analysis based on grid references. It supports a range of geospatial applications, including statistical aggregation, data visualisation, and interoperability across datasets. Designed for developers and analysts working with geospatial data in Great Britain, osbng simplifies integration with geospatial workflows and provides intuitive tools for exploring the structure and logic of the BNG system.
Tetra-allele cross often referred as four-way cross or double cross or four-line cross are those type of mating designs in which every cross is obtained by mating amongst four inbred lines. A tetra-allele cross can be obtained by crossing the resultant of two unrelated diallel crosses. A common triallel cross involving four inbred lines A, B, C and D can be symbolically represented as (A X B) X (C X D) or (A, B, C, D) or (A B C D) etc. Tetra-allele cross can be broadly categorized as Complete Tetra-allele Cross (CTaC) and Partial Tetra-allele Crosses (PTaC). Rawlings and Cockerham (1962)<doi:10.2307/2527461> firstly introduced and gave the method of analysis for tetra-allele cross hybrids using the analysis method of single cross hybrids under the assumption of no linkage. The set of all possible four-way mating between several genotypes (individuals, clones, homozygous lines, etc.) leads to a CTaC. If there are N number of inbred lines involved in a CTaC, the the total number of crosses, T = N*(N-1)*(N-2)*(N-3)/8. When more number of lines are to be considered, the total number of crosses in CTaC also increases. Thus, it is almost impossible for the investigator to carry out the experimentation with limited available resource material. This situation lies in taking a fraction of CTaC with certain underlying properties, known as PTaC.
This package provides functions for quickly creating R and Python scripts, as well as Rmarkdown or Quarto documents with automatically assigned name prefixes. Prefixes are either file counts (e.g. "001") or dates (e.g. "2022-09-26").
We introduce an R function one_two_sample() which can deal with one and two (normal) samples, Ying-Ying Zhang, Yi Wei (2012) <doi:10.2991/asshm-13.2013.29>. For one normal sample x, the function reports descriptive statistics, plot, interval estimation and test of hypothesis of x. For two normal samples x and y, the function reports descriptive statistics, plot, interval estimation and test of hypothesis of x and y, respectively. It also reports interval estimation and test of hypothesis of mu1-mu2 (the difference of the means of x and y) and sigma1^2 / sigma2^2 (the ratio of the variances of x and y), tests whether x and y are from the same population, finds the correlation coefficient of x and y if x and y have the same length.
An implementation of the Rapid Assessment Method for Older People or RAM-OP <https://www.helpage.org/resource/rapid-assessment-method-for-older-people-ramop-manual/>. It provides various functions that allow the user to design and plan the assessment and analyse the collected data. RAM-OP provides accurate and reliable estimates of the needs of older people.
Density-based clustering methods are well adapted to the clustering of high-dimensional data and enable the discovery of core groups of various shapes despite large amounts of noise. This package provides a novel density-based cluster extraction method, OPTICS k-Xi, and a framework to compare k-Xi models using distance-based metrics to investigate datasets with unknown number of clusters. The vignette first introduces density-based algorithms with simulated datasets, then presents and evaluates the k-Xi cluster extraction method. Finally, the models comparison framework is described and experimented on 2 genetic datasets to identify groups and their discriminating features. The k-Xi algorithm is a novel OPTICS cluster extraction method that specifies directly the number of clusters and does not require fine-tuning of the steepness parameter as the OPTICS Xi method. Combined with a framework that compares models with varying parameters, the OPTICS k-Xi method can identify groups in noisy datasets with unknown number of clusters. Results on summarized genetic data of 1,200 patients are in Charlon T. (2019) <doi:10.13097/archive-ouverte/unige:161795>. A short video tutorial can be found at <https://www.youtube.com/watch?v=P2XAjqI5Lc4/>.
Turn tidymodels workflows into objects containing the sufficient sequential equations to perform predictions. These smaller objects allow for low dependency prediction locally or directly in databases.
Overture Maps offers free and open geospatial map data sourced from various providers and standardized to a common schema. This tool allows you to download Overture Maps data for a specific region of interest and convert it to several different file formats. For more information, visit <https://overturemaps.org/download/>.
Crawler for OJS pages and scraper for meta-data from articles. You can crawl OJS archives, issues, articles, galleys, and search results. You can scrape articles metadata from their head tag in html, or from Open Archives Initiative ('OAI') records. Most of these functions rely on OJS routing conventions (<https://docs.pkp.sfu.ca/dev/documentation/en/architecture-routes>).
An implementation of several functions for feature extraction in ordinal time series datasets. Specifically, some of the features proposed by Weiss (2019) <doi:10.1080/01621459.2019.1604370> can be computed. These features can be used to perform inferential tasks or to feed machine learning algorithms for ordinal time series, among others. The package also includes some interesting datasets containing financial time series. Practitioners from a broad variety of fields could benefit from the general framework provided by otsfeatures'.
This package provides a comprehensive set of helpers that streamline data transmission and processing, making it effortless to interact with the OpenAI API.
The Open University Learning Analytics Dataset (OULAD) is available from Kuzilek et al. (2017) <doi:10.1038/sdata.2017.171>. The ouladFormat package loads, cleans and formats the OULAD for data analysis (each row of the returned data set is an individual student). The packageâ s main function, combined_dataset(), allows the user to choose whether the returned data set includes assessment, demographics, virtual learning environment (VLE), or registration variables etc.
Extends flexclust with an R implementation of order constrained solutions in k-means clustering (Steinley and Hubert, 2008, <doi:10.1007/s11336-008-9058-z>).
Obtain and evaluate various optimal designs for the 3, 4, and 5-parameter logistic models. The optimal designs are obtained based on the numerical algorithm in Hyun, Wong, Yang (2018) <doi:10.18637/jss.v083.i05>.
Make querying on OData easier. It exposes an ODataQuery object that can be manipulated and provides features such as selection, filtering and ordering.
Quaternions and Octonions are four- and eight- dimensional extensions of the complex numbers. They are normed division algebras over the real numbers and find applications in spatial rotations (quaternions), and string theory and relativity (octonions). The quaternions are noncommutative and the octonions nonassociative. See the package vignette for more details.
This package provides general purpose tools for helping users to implement steepest gradient descent methods for function optimization; for details see Ruder (2016) <arXiv:1609.04747v2>. Currently, the Steepest 2-Groups Gradient Descent and the Adaptive Moment Estimation (Adam) are the methods implemented. Other methods will be implemented in the future.
Helper functions for Org files (<https://orgmode.org/>): a generic function toOrg for transforming R objects into Org markup (most useful for data frames; there are also methods for Dates/POSIXt) and a function to read Org tables into data frames.
Reads data from Bruker OPUS binary files of Fourier-Transform infrared spectrometers of the company Bruker Optics GmbH & Co. This package is released independently from Bruker, and Bruker and OPUS are registered trademarks of Bruker Optics GmbH & Co. KG. <https://www.bruker.com/en/products-and-solutions/infrared-and-raman/opus-spectroscopy-software/latest-release.html>. It lets you import both measurement data and parameters from OPUS files. The main method is `read_opus()`, which reads one or multiple OPUS files into a standardized list class. Behind the scenes, the reader parses the file header for assigning spectral blocks and reading binary data from the respective byte positions, using a reverse engineering approach. Infrared spectroscopy combined with chemometrics and machine learning is an established method to scale up chemical diagnostics in various industries and scientific fields.
Client for the Office of National Statistics ('ONS') API <https://api.beta.ons.gov.uk/v1>.
Summarizes the taxonomic composition, diversity contribution of the rare and abundant community by using OTU (operational taxonomic unit) table which was generated by analyzing pipeline of QIIME or mothur'. The rare biosphere in this package is subset by the relative abundance threshold (for details about rare biosphere please see Lynch and Neufeld (2015) <doi:10.1038/nrmicro3400>).
This contains functions and data used by the Open Visualization Academy classes on data processing and visualization. The tutorial included with this package requires the gradethis package which can be installed using "remotes::install_github('rstudio/gradethis')".