_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-bayess5 1.41
Propagated dependencies: r-splines2@0.5.4 r-snowfall@1.84-6.3 r-matrix@1.7-4 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://arxiv.org/abs/1507.07106v4
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Variable Selection Using Simplified Shotgun Stochastic Search with Screening (S5)
Description:

In p >> n settings, full posterior sampling using existing Markov chain Monte Carlo (MCMC) algorithms is highly inefficient and often not feasible from a practical perspective. To overcome this problem, we propose a scalable stochastic search algorithm that is called the Simplified Shotgun Stochastic Search (S5) and aimed at rapidly explore interesting regions of model space and finding the maximum a posteriori(MAP) model. Also, the S5 provides an approximation of posterior probability of each model (including the marginal inclusion probabilities). This algorithm is a part of an article titled "Scalable Bayesian Variable Selection Using Nonlocal Prior Densities in Ultrahigh-dimensional Settings" (2018) by Minsuk Shin, Anirban Bhattacharya, and Valen E. Johnson and "Nonlocal Functional Priors for Nonparametric Hypothesis Testing and High-dimensional Model Selection" (2020+) by Minsuk Shin and Anirban Bhattacharya.

r-bayesrules 0.0.3
Propagated dependencies: r-rstanarm@2.32.2 r-purrr@1.2.0 r-magrittr@2.0.4 r-janitor@2.2.1 r-groupdata2@2.0.5 r-ggplot2@4.0.1 r-e1071@1.7-16 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://bayes-rules.github.io/bayesrules/docs/
Licenses: GPL 3+
Build system: r
Synopsis: Datasets and Supplemental Functions from Bayes Rules! Book
Description:

This package provides datasets and functions used for analysis and visualizations in the Bayes Rules! book (<https://www.bayesrulesbook.com>). The package contains a set of functions that summarize and plot Bayesian models from some conjugate families and another set of functions for evaluation of some Bayesian models.

r-bootstraptests 0.1.0
Propagated dependencies: r-pbapply@1.7-4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/AlexisDerumigny/BootstrapTests
Licenses: GPL 3
Build system: r
Synopsis: Bootstrap-Based Hypothesis Testing using Different Resampling Schemes
Description:

Perform bootstrap-based hypothesis testing procedures on three statistical problems. In particular, it covers independence testing, testing the slope in a linear regression setting, and goodness-of-fit testing, following (Derumigny, Galanis, Schipper and Van der Vaart, 2025) <doi:10.48550/arXiv.2512.10546>.

r-barry 0.2.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/USCbiostats/barryr
Licenses: Expat
Build system: r
Synopsis: Your Go-to Motif Accountant
Description:

This package provides the C++ header-only library barry for use in R packages. barry is a C++ template library for counting sufficient statistics on binary arrays and building discrete exponential-family models. It provides tools for sparse arrays, user-defined count statistics, support set constraints, power set generation, and includes modules for Discrete Exponential Family Models (DEFMs) and network statistics. By placing these headers in this package, we offer an efficient distribution system for CRAN as replication of this code in the sources of other packages is avoided. This package follows the same approach as the BH package which provides Boost headers for R packages.

r-bonedensitymapping 0.1.4
Propagated dependencies: r-sp@2.2-0 r-rvcg@0.25 r-rnifti@1.8.0 r-rjson@0.2.23 r-rgl@1.3.31 r-rdist@0.0.5 r-ptinpoly@2.8 r-oro-nifti@0.11.4 r-nat@1.8.25 r-ggpubr@0.6.2 r-ggplot2@4.0.1 r-geometry@0.5.2 r-fnn@1.1.4.1 r-cowplot@1.2.0 r-concaveman@1.2.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BoneDensityMapping
Licenses: Expat
Build system: r
Synopsis: Maps Bone Densities from CT Scans to Surface Models
Description:

Allows local bone density estimates to be derived from CT data and mapped to 3D bone models in a reproducible manner. Processing can be performed at the individual bone or group level. Also includes tools for visualizing the bone density estimates. Example methods are described in Telfer et al., (2021) <doi:10.1002/jor.24792>, Telfer et al., (2021) <doi:10.1016/j.jse.2021.05.011>.

r-braqca 1.4.11.27
Propagated dependencies: r-qca@3.23 r-bootstrap@2019.6
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=braQCA
Licenses: GPL 3
Build system: r
Synopsis: Bootstrapped Robustness Assessment for Qualitative Comparative Analysis
Description:

Test the robustness of a user's Qualitative Comparative Analysis solutions to randomness, using the bootstrapped assessment: baQCA(). This package also includes a function that provides recommendations for improving solutions to reach typical significance levels: brQCA(). Data included come from McVeigh et al. (2014) <doi:10.1177/0003122414534065>.

r-bapred 1.1
Propagated dependencies: r-sva@3.58.0 r-mnormt@2.1.1 r-mass@7.3-65 r-lme4@1.1-37 r-glmnet@4.1-10 r-fuzzyranktests@0.5 r-fnn@1.1.4.1 r-biobase@2.70.0 r-affyplm@1.86.0 r-affy@1.88.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bapred
Licenses: GPL 2
Build system: r
Synopsis: Batch Effect Removal and Addon Normalization (in Phenotype Prediction using Gene Data)
Description:

Various tools dealing with batch effects, in particular enabling the removal of discrepancies between training and test sets in prediction scenarios. Moreover, addon quantile normalization and addon RMA normalization (Kostka & Spang, 2008) is implemented to enable integrating the quantile normalization step into prediction rules. The following batch effect removal methods are implemented: FAbatch, ComBat, (f)SVA, mean-centering, standardization, Ratio-A and Ratio-G. For each of these we provide an additional function which enables a posteriori ('addon') batch effect removal in independent batches ('test data'). Here, the (already batch effect adjusted) training data is not altered. For evaluating the success of batch effect adjustment several metrics are provided. Moreover, the package implements a plot for the visualization of batch effects using principal component analysis. The main functions of the package for batch effect adjustment are ba() and baaddon() which enable batch effect removal and addon batch effect removal, respectively, with one of the seven methods mentioned above. Another important function here is bametric() which is a wrapper function for all implemented methods for evaluating the success of batch effect removal. For (addon) quantile normalization and (addon) RMA normalization the functions qunormtrain(), qunormaddon(), rmatrain() and rmaaddon() can be used.

r-bootwar 0.2.1
Propagated dependencies: r-shinythemes@1.2.0 r-shinyjs@2.1.0 r-shiny@1.11.1 r-npboottprm@0.3.2 r-mmcards@0.1.1 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/mightymetrika/bootwar
Licenses: Expat
Build system: r
Synopsis: Nonparametric Bootstrap Test with Pooled Resampling Card Game
Description:

The card game War is simple in its rules but can be lengthy. In another domain, the nonparametric bootstrap test with pooled resampling (nbpr) methods, as outlined in Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, is optimal for comparing paired or unpaired means in non-normal data, especially for small sample size studies. However, many researchers are unfamiliar with these methods. The bootwar package bridges this gap by enabling users to grasp the concepts of nbpr via Boot War, a variation of the card game War designed for small samples. The package provides functions like score_keeper() and play_round() to streamline gameplay and scoring. Once a predetermined number of rounds concludes, users can employ the analyze_game() function to derive game results. This function leverages the npboottprm package's nonparboot() to report nbpr results and, for comparative analysis, also reports results from the stats package's t.test() function. Additionally, bootwar features an interactive shiny web application, bootwar(). This offers a user-centric interface to experience Boot War, enhancing understanding of nbpr methods across various distributions, sample sizes, number of bootstrap resamples, and confidence intervals.

r-blrpm 1.0
Propagated dependencies: r-r6@2.6.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BLRPM
Licenses: GPL 2+
Build system: r
Synopsis: Stochastic Rainfall Generator Bartlett-Lewis Rectangular Pulse Model
Description:

Due to a limited availability of observed high-resolution precipitation records with adequate length, simulations with stochastic precipitation models are used to generate series for subsequent studies [e.g. Khaliq and Cunmae, 1996, <doi:10.1016/0022-1694(95)02894-3>, Vandenberghe et al., 2011, <doi:10.1029/2009WR008388>]. This package contains an R implementation of the original Bartlett-Lewis rectangular pulse model (BLRPM), developed by Rodriguez-Iturbe et al. (1987) <doi:10.1098/rspa.1987.0039>. It contains a function for simulating a precipitation time series based on storms and cells generated by the model with given or estimated model parameters. Additionally BLRPM parameters can be estimated from a given or simulated precipitation time series. The model simulations can be plotted in a three-layer plot including an overview of generated storms and cells by the model (which can also be plotted individually), a continuous step-function and a discrete precipitation time series at a chosen aggregation level.

r-biodem 0.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=Biodem
Licenses: GPL 2
Build system: r
Synopsis: Biodemography Functions
Description:

The Biodem package provides a number of functions for Biodemographic analysis.

r-bqror 1.7.1
Propagated dependencies: r-truncnorm@1.0-9 r-progress@1.2.3 r-pracma@2.4.6 r-npflow@0.13.6 r-mass@7.3-65 r-invgamma@1.2 r-gigrvg@0.8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/prajual/bqror
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Quantile Regression for Ordinal Models
Description:

Package provides functions for estimation and inference in Bayesian quantile regression with ordinal outcomes. An ordinal model with 3 or more outcomes (labeled OR1 model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings (MH) algorithm. Whereas an ordinal model with exactly 3 outcomes (labeled OR2 model) is estimated using a Gibbs sampling algorithm. The summary output presents the posterior mean, posterior standard deviation, 95% credible intervals, and the inefficiency factors along with the two model comparison measures â logarithm of marginal likelihood and the deviance information criterion (DIC). The package also provides functions for computing the covariate effects and other functions that aids either the estimation or inference in quantile ordinal models. Rahman, M. A. (2016).â Bayesian Quantile Regression for Ordinal Models.â Bayesian Analysis, 11(1): 1-24 <doi: 10.1214/15-BA939>. Yu, K., and Moyeed, R. A. (2001). â Bayesian Quantile Regression.â Statistics and Probability Letters, 54(4): 437â 447 <doi: 10.1016/S0167-7152(01)00124-9>. Koenker, R., and Bassett, G. (1978).â Regression Quantiles.â Econometrica, 46(1): 33-50 <doi: 10.2307/1913643>. Chib, S. (1995). â Marginal likelihood from the Gibbs output.â Journal of the American Statistical Association, 90(432):1313â 1321, 1995. <doi: 10.1080/01621459.1995.10476635>. Chib, S., and Jeliazkov, I. (2001). â Marginal likelihood from the Metropolis-Hastings output.â Journal of the American Statistical Association, 96(453):270â 281, 2001. <doi: 10.1198/016214501750332848>.

r-bglr 1.1.4
Propagated dependencies: r-truncnorm@1.0-9 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BGLR
Licenses: GPL 3
Build system: r
Synopsis: Bayesian Generalized Linear Regression
Description:

Bayesian Generalized Linear Regression.

r-bulkreadr 1.2.1
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-sjlabelled@1.2.0 r-rlang@1.1.6 r-readxl@1.4.5 r-readr@2.1.6 r-purrr@1.2.0 r-openxlsx@4.2.8.1 r-magrittr@2.0.4 r-lubridate@1.9.4 r-labelled@2.16.0 r-inspectdf@0.0.12.1 r-haven@2.5.5 r-googlesheets4@1.1.2 r-fs@1.6.6 r-dplyr@1.1.4 r-curl@7.0.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/gbganalyst/bulkreadr
Licenses: Expat
Build system: r
Synopsis: The Ultimate Tool for Reading Data in Bulk
Description:

Designed to simplify and streamline the process of reading and processing large volumes of data in R, this package offers a collection of functions tailored for bulk data operations. It enables users to efficiently read multiple sheets from Microsoft Excel and Google Sheets workbooks, as well as various CSV files from a directory. The data is returned as organized data frames, facilitating further analysis and manipulation. Ideal for handling extensive data sets or batch processing tasks, bulkreadr empowers users to manage data in bulk effortlessly, saving time and effort in data preparation workflows. Additionally, the package seamlessly works with labelled data from SPSS and Stata.

r-bsgof 0.23.8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://AppliedStat.GitHub.io/R/
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Birnbaum-Saunders Goodness-of-Fit Test
Description:

This package performs goodness of fit test for the Birnbaum-Saunders distribution and provides the maximum likelihood estimate and the method-of-moments estimate. For more details, see Park and Wang (2013) <arXiv:2308.10150>. This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. 2022R1A2C1091319, RS-2023-00242528).

r-bfpack 1.5.3
Propagated dependencies: r-sandwich@3.1-1 r-qrm@0.4-35 r-pracma@2.4.6 r-mvtnorm@1.3-3 r-metabma@0.6.9 r-mass@7.3-65 r-lme4@1.1-37 r-ergm@4.11.0 r-coda@0.19-4.1 r-berryfunctions@1.22.13 r-bergm@5.0.7 r-bain@0.2.11
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/jomulder/BFpack
Licenses: GPL 3+
Build system: r
Synopsis: Flexible Bayes Factor Testing of Scientific Expectations
Description:

Implementation of default Bayes factors for testing statistical hypotheses under various statistical models. The package is intended for applied quantitative researchers in the social and behavioral sciences, medical research, and related fields. The Bayes factor tests can be executed for statistical models such as univariate and multivariate normal linear models, correlation analysis, generalized linear models, special cases of linear mixed models, survival models, relational event models. Parameters that can be tested are location parameters (e.g., group means, regression coefficients), variances (e.g., group variances), and measures of association (e.g,. polychoric/polyserial/biserial/tetrachoric/product moments correlations), among others. The statistical underpinnings are described in O'Hagan (1995) <DOI:10.1111/j.2517-6161.1995.tb02017.x>, De Santis and Spezzaferri (2001) <DOI:10.1016/S0378-3758(00)00240-8>, Mulder and Xin (2022) <DOI:10.1080/00273171.2021.1904809>, Mulder and Gelissen (2019) <DOI:10.1080/02664763.2021.1992360>, Mulder (2016) <DOI:10.1016/j.jmp.2014.09.004>, Mulder and Fox (2019) <DOI:10.1214/18-BA1115>, Mulder and Fox (2013) <DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017) <DOI:10.1037/met0000116>, Hoijtink, Mulder, van Lissa, and Gu (2018) <DOI:10.1037/met0000201>, Gu, Mulder, and Hoijtink (2018) <DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder (2018) <DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel (2018) <DOI:10.1037/met0000187>. When using the packages, please refer to the package Mulder et al. (2021) <DOI:10.18637/jss.v100.i18> and the relevant methodological papers.

r-bcrm 0.5.4
Propagated dependencies: r-rlang@1.1.6 r-mvtnorm@1.3-3 r-knitr@1.50 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/mikesweeting/bcrm
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Continual Reassessment Method for Phase I Dose-Escalation Trials
Description:

This package implements a wide variety of one- and two-parameter Bayesian CRM designs. The program can run interactively, allowing the user to enter outcomes after each cohort has been recruited, or via simulation to assess operating characteristics. See Sweeting et al. (2013): <doi:10.18637/jss.v054.i13>.

r-bootcomb 1.1.2
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bootComb
Licenses: GPL 3
Build system: r
Synopsis: Combine Parameter Estimates via Parametric Bootstrap
Description:

Propagate uncertainty from several estimates when combining these estimates via a function. This is done by using the parametric bootstrap to simulate values from the distribution of each estimate to build up an empirical distribution of the combined parameter. Finally either the percentile method is used or the highest density interval is chosen to derive a confidence interval for the combined parameter with the desired coverage. Gaussian copulas are used for when parameters are assumed to be dependent / correlated. References: Davison and Hinkley (1997,ISBN:0-521-57471-4) for the parametric bootstrap and percentile method, Gelman et al. (2014,ISBN:978-1-4398-4095-5) for the highest density interval, Stockdale et al. (2020)<doi:10.1016/j.jhep.2020.04.008> for an example of combining conditional prevalences.

r-blockr-ggplot 0.1.0
Propagated dependencies: r-shinywidgets@0.9.0 r-shinyjs@2.1.0 r-shiny@1.11.1 r-patchwork@1.3.2 r-glue@1.8.0 r-ggplot2@4.0.1 r-colourpicker@1.3.0 r-blockr-core@0.1.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://bristolmyerssquibb.github.io/blockr.ggplot/
Licenses: GPL 3+
Build system: r
Synopsis: Interactive 'ggplot2' Visualization Blocks
Description:

Extends blockr.core with interactive blocks for data visualization using ggplot2'. Users can build charts through a graphical interface without writing code directly. Includes common chart types (bar charts, line charts, pie charts, scatter plots) as well as statistical plots (boxplots, histograms, density plots, violin plots) with rich customization options and intuitive user interfaces.

r-bayesianvars 0.1.6
Propagated dependencies: r-stochvol@3.2.8 r-scales@1.4.0 r-rcppprogress@0.4.2 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mvtnorm@1.3-3 r-mass@7.3-65 r-lpsolveapi@5.5.2.0-17.14 r-gigrvg@0.8 r-factorstochvol@1.1.0 r-colorspace@2.1-2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/luisgruber/bayesianVARs
Licenses: GPL 3+
Build system: r
Synopsis: MCMC Estimation of Bayesian Vectorautoregressions
Description:

Efficient Markov Chain Monte Carlo (MCMC) algorithms for the fully Bayesian estimation of vectorautoregressions (VARs) featuring stochastic volatility (SV). Implements state-of-the-art shrinkage priors following Gruber & Kastner (2025) <doi:10.1016/j.ijforecast.2025.02.001>. Efficient equation-per-equation estimation following Kastner & Huber (2020) <doi:10.1002/for.2680> and Carrerio et al. (2021) <doi:10.1016/j.jeconom.2021.11.010>.

r-bartcause 1.0-10
Propagated dependencies: r-dbarts@0.9-32
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/vdorie/bartCause
Licenses: GPL 2+
Build system: r
Synopsis: Causal Inference using Bayesian Additive Regression Trees
Description:

This package contains a variety of methods to generate typical causal inference estimates using Bayesian Additive Regression Trees (BART) as the underlying regression model (Hill (2012) <doi:10.1198/jcgs.2010.08162>).

r-bitfield 0.6.1
Propagated dependencies: r-yaml@2.3.10 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.3.0 r-terra@1.8-86 r-stringr@1.6.0 r-rlang@1.1.6 r-purrr@1.2.0 r-httr@1.4.7 r-glue@1.8.0 r-gitcreds@0.1.2 r-gh@1.5.0 r-dplyr@1.1.4 r-crayon@1.5.3 r-codetools@0.2-20 r-checkmate@2.3.3 r-base64enc@0.1-3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/bitfloat/bitfield
Licenses: GPL 3+
Build system: r
Synopsis: Handle Bitfields to Record Meta Data
Description:

Record algorithmic and analytic meta data along a workflow to store that in a bitfield, which can be published alongside any (modelled) data products.

r-bayesimages 0.7-0
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://bitbucket.org/Azeari/bayesimages
Licenses: GPL 2+ FSDG-compatible
Build system: r
Synopsis: Bayesian Methods for Image Segmentation using a Potts Model
Description:

Various algorithms for segmentation of 2D and 3D images, such as computed tomography and satellite remote sensing. This package implements Bayesian image analysis using the hidden Potts model with external field prior of Moores et al. (2015) <doi:10.1016/j.csda.2014.12.001>. Latent labels are sampled using chequerboard updating or Swendsen-Wang. Algorithms for the smoothing parameter include pseudolikelihood, path sampling, the exchange algorithm, approximate Bayesian computation (ABC-MCMC and ABC-SMC), and the parametric functional approximate Bayesian (PFAB) algorithm. Refer to Moores, Pettitt & Mengersen (2020) <doi:10.1007/978-3-030-42553-1_6> for an overview and also to <doi:10.1007/s11222-014-9525-6> and <doi:10.1214/18-BA1130> for further details of specific algorithms.

r-bayesbrainmap 0.2.0
Propagated dependencies: r-squarem@2021.1 r-pesel@0.7.5 r-matrixstats@1.5.0 r-matrix@1.7-4 r-foreach@1.5.2 r-fmritools@0.7.2 r-fmriscrub@0.14.5 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/mandymejia/BayesBrainMap
Licenses: GPL 3
Build system: r
Synopsis: Estimate Brain Networks and Connectivity with Population-Derived Priors
Description:

This package implements Bayesian brain mapping with population-derived priors, including the original model described in Mejia et al. (2020) <doi:10.1080/01621459.2019.1679638>, the model with spatial priors described in Mejia et al. (2022) <doi:10.1080/10618600.2022.2104289>, and the model with population-derived priors on functional connectivity described in Mejia et al. (2025) <doi:10.1093/biostatistics/kxaf022>. Population-derived priors are based on templates representing established brain network maps, for example derived from independent component analysis (ICA), parcellations, or other methods. Model estimation is based on expectation-maximization or variational Bayes algorithms. Includes direct support for CIFTI', GIFTI', and NIFTI neuroimaging file formats.

r-bvarverse 0.0.1
Propagated dependencies: r-tidyr@1.3.1 r-rlang@1.1.6 r-ggplot2@4.0.1 r-generics@0.1.4 r-bvar@1.0.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/nk027/bvarverse
Licenses: GPL 3
Build system: r
Synopsis: Tidy Bayesian Vector Autoregression
Description:

This package provides functions to prepare tidy objects from estimated models via BVAR (see Kuschnig & Vashold, 2019 <doi:10.13140/RG.2.2.25541.60643>) and visualisation thereof. Bridges the gap between estimating models with BVAR and plotting the results in a more sophisticated way with ggplot2 as well as passing them on in a tidy format.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283