Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of the van Westendorp Price Sensitivity Meter in R, which is a survey-based approach to analyze consumer price preferences and sensitivity (van Westendorp 1976, isbn:9789283100386).
Fits the Poisson-Tweedie generalized linear mixed model described in Signorelli et al. (2021, <doi:10.1177/1471082X20936017>). Likelihood approximation based on adaptive Gauss Hermite quadrature rule.
It provides functions to perform permutation conditional random one-sample and two-samples t-tests in a multivariate framework.
This package provides functions which facilitate harmonization of data from multiple different datasets. Data harmonization involves taking data sources with differing values, creating coding instructions to create a harmonized set of values, then making those data modifications. psHarmonize will assist with data modification once the harmonization instructions are written. Coding instructions are written by the user to create a "harmonization sheet". This sheet catalogs variable names, domains (e.g. clinical, behavioral, outcomes), provides R code instructions for mapping or conversion of data, specifies the variable name in the harmonized data set, and tracks notes. The package will then harmonize the source datasets according to the harmonization sheet to create a harmonized dataset. Once harmonization is finished, the package also has functions that will create descriptive statistics using RMarkdown'. Data Harmonization guidelines have been described by Fortier I, Raina P, Van den Heuvel ER, et al. (2017) <doi:10.1093/ije/dyw075>. Additional details of our R package have been described by Stephen JJ, Carolan P, Krefman AE, et al. (2024) <doi:10.1016/j.patter.2024.101003>.
Generation of a chosen number of count, binary, ordinal, and continuous random variables, with specified correlations and marginal properties. The details of the method are explained in Demirtas (2012) <DOI:10.1002/sim.5362>.
This package provides Partial least squares Regression and various regular, sparse or kernel, techniques for fitting Cox models in high dimensional settings <doi:10.1093/bioinformatics/btu660>, Bastien, P., Bertrand, F., Meyer N., Maumy-Bertrand, M. (2015), Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Bioinformatics, 31(3):397-404. Cross validation criteria were studied in <doi:10.48550/arXiv.1810.02962>, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), Cross validating extensions of kernel, sparse or regular partial least squares regression models to censored data.
This package implements multinomial CDF (P(N1<=n1, ..., Nk<=nk)) and tail probabilities (P(N1>n1, ..., Nk>nk)), as well as probabilities with both constraints (P(l1<N1<=u1, ..., lk<Nk<=uk)). Uses a method suggested by Bruce Levin (1981) <doi:10.1214/aos/1176345593>.
Utilize the Bayesian prior and posterior predictive checking approach to provide a statistical assessment of replication success and failure. The package is based on the methods proposed in Zhao,Y., Wen X.(2021) <arXiv:2105.03993>.
Personalize drug regimens using individual pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic (PK-PD) profiles. By combining therapeutic drug monitoring (TDM) data with a population model, posologyr offers accurate posterior estimates and helps compute optimal individualized dosing regimens. The empirical Bayes estimates are computed following the method described by Kang et al. (2012) <doi:10.4196/kjpp.2012.16.2.97>.
This package provides a comprehensive implementation of Petersen-type estimators and its many variants for two-sample capture-recapture studies. A conditional likelihood approach is used that allows for tag loss; non reporting of tags; reward tags; categorical, geographical and temporal stratification; partial stratification; reverse capture-recapture; and continuous variables in modeling the probability of capture. Many examples from fisheries management are presented.
Support functions, data sets, and vignettes for the psych package. Contains several of the biggest data sets for the psych package as well as four vignettes. A few helper functions for file manipulation are included as well. For more information, see the <https://personality-project.org/r/> web page.
Download and generate summaries for the rodent, plant, ant, and weather data from the Portal Project. Portal is a long-term (and ongoing) experimental monitoring site in the Chihuahuan desert. The raw data files can be found at <https://github.com/weecology/portaldata>.
Fits and evaluates three-state partitioned survival analyses (PartSAs) and Markov models (clock forward or clock reset) to progression and overall survival data typically collected in oncology clinical trials. These model structures are typically considered in cost-effectiveness modeling in advanced/metastatic cancer indications. Muston (2024). "Informing structural assumptions for three state oncology cost-effectiveness models through model efficiency and fit". Applied Health Economics and Health Policy.
Compute and tune some positive definite and sparse covariance estimators.
This package provides tools for profiling a user-supplied log-likelihood function to calculate confidence intervals for model parameters. Speed of computation can be improved by adjusting the step sizes in the profiling and/or starting the profiling from limits based on the approximate large sample normal distribution for the maximum likelihood estimator of a parameter. The accuracy of the limits can be set by the user. A plot method visualises the log-likelihood and confidence interval. Cases where the profile log-likelihood flattens above the value at which a confidence limit is defined can be handled, leading to a limit at plus or minus infinity. Disjoint confidence intervals will not be found.
Like similar profiling tools, the proffer package automatically detects sources of slowness in R code. The distinguishing feature of proffer is its utilization of pprof', which supplies interactive visualizations that are efficient and easy to interpret. Behind the scenes, the profile package converts native Rprof() data to a protocol buffer that pprof understands. For the documentation of proffer', visit <https://r-prof.github.io/proffer/>. To learn about the implementations and methodologies of pprof', profile', and protocol buffers, visit <https://github.com/google/pprof>. <https://protobuf.dev>, and <https://github.com/r-prof/profile>, respectively.
This package provides functions to aid the identification of probable/possible duplicates in Plant Genetic Resources (PGR) collections using passport databases comprising of information records of each constituent sample. These include methods for cleaning the data, creation of a searchable Key Word in Context (KWIC) index of keywords associated with sample records and the identification of nearly identical records with similar information by fuzzy, phonetic and semantic matching of keywords.
Run Queries against the API of Piwik Pro <https://developers.piwik.pro/en/latest/custom_reports/http_api/http_api.html>. The result is a tibble.
This package implements sparse regression with paired covariates (<doi:10.1007/s11634-019-00375-6>). The paired lasso is designed for settings where each covariate in one set forms a pair with a covariate in the other set (one-to-one correspondence). For the optional correlation shrinkage, install ashr (<https://github.com/stephens999/ashr>) and CorShrink (<https://github.com/kkdey/CorShrink>) from GitHub (see README).
This package provides an implementation of particle swarm optimisation consistent with the standard PSO 2007/2011 by Maurice Clerc. Additionally a number of ancillary routines are provided for easy testing and graphics.
This package contains utilities for the analysis of post-translational modifications (PTMs) in proteins, with particular emphasis on the sulfoxidation of methionine residues. Features include the ability to download, filter and analyze data from the sulfoxidation database MetOSite'. Utilities to search and characterize S-aromatic motifs in proteins are also provided. In addition, functions to analyze sequence environments around modifiable residues in proteins can be found. For instance, ptm allows to search for amino acids either overrepresented or avoided around the modifiable residues from the proteins of interest. Functions tailored to test statistical hypothesis related to these differential sequence environments are also implemented. Further and detailed information regarding the methods in this package can be found in (Aledo (2020) <https://metositeptm.com>).
Test-based Image structural similarity measure and test of independence. This package implements the key functions of two tasks: (1) computing image structural similarity measure PSSIM of Wang, Maldonado and Silwal (2011) <DOI:10.1016/j.csda.2011.04.021>; and (2) test of independence between a response and a covariate in presence of heteroscedastic treatment effects proposed by Wang, Tolos, and Wang (2010) <DOI:10.1002/cjs.10068>.
This package provides a collection of easy-to-use tools for regression analysis of survival data with a cure fraction proposed in Su et al. (2022) <doi:10.1177/09622802221108579>. The modeling framework is based on the Cox proportional hazards mixture cure model and the bounded cumulative hazard (promotion time cure) model. The pseudo-observations approach is utilized to assess covariate effects and embedded in the variable selection procedure.
This package provides functions tailored for scientific and student communities involved in plant science research. Functionalities encompass estimation chlorophyll content according to Arnon (1949) <doi:10.1104/pp.24.1.1>, determination water potential of Polyethylene glycol(PEG)6000 as in Michel and Kaufmann (1973) <doi:10.1104/pp.51.5.914> and functions related to estimation of yield related indices like Abiotic tolerance index as given by Moosavi et al.(2008)<doi:10.22059/JDESERT.2008.27115>, Geometric mean productivity (GMP) by Fernandez (1992) <ISBN:92-9058-081-X>, Golden Mean by Moradi et al.(2012)<doi:10.14207/ejsd.2012.v1n3p543>, HAM by Schneider et al.(1997)<doi:10.2135/cropsci1997.0011183X003700010007x>,MPI and TOL by Hossain etal., (1990)<doi:10.2135/cropsci1990.0011183X003000030030x>, RDI by Fischer et al. (1979)<doi:10.1071/AR9791001>,SSI by Fisher et al.(1978)<doi:10.1071/AR9780897>, STI by Fernandez (1993)<doi:10.22001/wvc.72511>,YSI by Bouslama & Schapaugh (1984)<doi:10.2135/cropsci1984.0011183X002400050026x>, Yield index by Gavuzzi et al.(1997)<doi:10.4141/P96-130>.