Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the method described at the UCLA Statistical Consulting site <https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/> for checking if the proportional odds assumption holds for a cumulative logit model.
Conduct a priori power analyses via Monte-Carlo style data simulation for linear and generalized linear mixed-effects models (LMMs/GLMMs). Provides a user-friendly workflow with helper functions to easily define fixed and random effects as well as diagnostic functions to evaluate the adequacy of the results of the power analysis.
Post-selection inference in linear regression models, constructing simultaneous confidence intervals across a user-specified universe of models. Implements the methodology described in Kuchibhotla, Kolassa, and Kuffner (2022) "Post-Selection Inference" <doi:10.1146/annurev-statistics-100421-044639> to ensure valid inference after model selection, with applications in high-dimensional settings like Lasso selection.
Analysis of protein expression data can be done through Principal Component Analysis (PCA), and this R package is designed to streamline the analysis. This package enables users to perform PCA and it generates biplot and scree plot for advanced graphical visualization. Optionally, it supports grouping/clustering visualization with PCA loadings and confidence ellipses. With this R package, researchers can quickly explore complex protein datasets, interpret variance contributions, and visualize sample clustering through intuitive biplots. For more details, see Jolliffe (2001) <doi:10.1007/b98835>, Gabriel (1971) <doi:10.1093/biomet/58.3.453>, Zhang et al. (2024) <doi:10.1038/s41467-024-53239-9>, and Anandan et al. (2022) <doi:10.1038/s41598-022-07781-5>.
Density, distribution function, quantile function and random generation for the family of power and reversal power distributions.
This package provides functions to estimate and plot smooth or linear population trends, or population indices, from animal or plant count survey data.
This package provides functions and data-sets that are helpful for teaching statistics and data analysis. It was originally designed for use when teaching students in the Psychology Department at Nottingham Trent University.
Paired mass distance (PMD) analysis proposed in Yu, Olkowicz and Pawliszyn (2018) <doi:10.1016/j.aca.2018.10.062> and PMD based reactomics analysis proposed in Yu and Petrick (2020) <doi:10.1038/s42004-020-00403-z> for gas/liquid chromatographyâ mass spectrometry (GC/LC-MS) based non-targeted analysis. PMD analysis including GlobalStd algorithm and structure/reaction directed analysis. GlobalStd algorithm could found independent peaks in m/z-retention time profiles based on retention time hierarchical cluster analysis and frequency analysis of paired mass distances within retention time groups. Structure directed analysis could be used to find potential relationship among those independent peaks in different retention time groups based on frequency of paired mass distances. Reactomics analysis could also be performed to build PMD network, assign sources and make biomarker reaction discovery. GUIs for PMD analysis is also included as shiny applications.
The goal of pak is to make package installation faster and more reliable. In particular, it performs all HTTP operations in parallel, so metadata resolution and package downloads are fast. Metadata and package files are cached on the local disk as well. pak has a dependency solver, so it finds version conflicts before performing the installation. This version of pak supports CRAN, Bioconductor and GitHub packages as well.
Speeds up the process of loading raw data from MBA (Multiplex Bead Assay) examinations, performs quality control checks, and automatically normalises the data, preparing it for more advanced, downstream tasks. The main objective of the package is to create a simple environment for a user, who does not necessarily have experience with R language. The package is developed within the project of the same name - PvSTATEM', which is an international project aiming for malaria elimination.
This package provides tools to sort, edit and prune pedigrees and to extract the inbreeding coefficients and the relationship matrix (includes code for pedigrees from self-pollinated species). The use of pedigree data is central to genetics research within the animal and plant breeding communities to predict breeding values. The relationship matrix between the individuals can be derived from pedigree structure ('Vazquez et al., 2010') <doi:10.2527/jas.2009-1952>.
Design parameters of the optimal two-period multiarm platform design (controlling for either family-wise error rate or pair-wise error rate) can be calculated using this package, allowing pre-planned deferred arms to be added during the trial. More details about the design method can be found in the paper: Pan, H., Yuan, X. and Ye, J. (2022) "An optimal two-period multiarm platform design with new experimental arms added during the trial". Manuscript submitted for publication. For additional references: Dunnett, C. W. (1955) <doi:10.2307/2281208>.
Bayesian supervised predictive classifiers, hypothesis testing, and parametric estimation under Partition Exchangeability are implemented. The two classifiers presented are the marginal classifier (that assumes test data is i.i.d.) next to a more computationally costly but accurate simultaneous classifier (that finds a labelling for the entire test dataset at once based on simultanous use of all the test data to predict each label). We also provide the Maximum Likelihood Estimation (MLE) of the only underlying parameter of the partition exchangeability generative model as well as hypothesis testing statistics for equality of this parameter with a single value, alternative, or multiple samples. We present functions to simulate the sequences from Ewens Sampling Formula as the realisation of the Poisson-Dirichlet distribution and their respective probabilities.
Gives the ability to automatically deploy a plumber API from R functions on DigitalOcean and other cloud-based servers.
This package creates PRISMA <http://prisma-statement.org/> diagram from a minimal dataset of included and excluded studies and allows for more custom diagrams. PRISMA diagrams are used to track the identification, screening, eligibility, and inclusion of studies in a systematic review.
We extend two general methods of moment estimators to panel vector autoregression models (PVAR) with p lags of endogenous variables, predetermined and strictly exogenous variables. This general PVAR model contains the first difference GMM estimator by Holtz-Eakin et al. (1988) <doi:10.2307/1913103>, Arellano and Bond (1991) <doi:10.2307/2297968> and the system GMM estimator by Blundell and Bond (1998) <doi:10.1016/S0304-4076(98)00009-8>. We also provide specification tests (Hansen overidentification test, lag selection criterion and stability test of the PVAR polynomial) and classical structural analysis for PVAR models such as orthogonal and generalized impulse response functions, bootstrapped confidence intervals for impulse response analysis and forecast error variance decompositions.
Generate all necessary R/Rmd/shell files for data processing after running GGIR (v2.4.0) for accelerometer data. In part 1, all csv files in the GGIR output directory were read, transformed and then merged. In part 2, the GGIR output files were checked and summarized in one excel sheet. In part 3, the merged data was cleaned according to the number of valid hours on each night and the number of valid days for each subject. In part 4, the cleaned activity data was imputed by the average Euclidean norm minus one (ENMO) over all the valid days for each subject. Finally, a comprehensive report of data processing was created using Rmarkdown, and the report includes few exploratory plots and multiple commonly used features extracted from minute level actigraphy data.
Data analysis for Project Risk Management via the Second Moment Method, Monte Carlo Simulation, Contingency Analysis, Sensitivity Analysis, Earned Value Management, Learning Curves, Design Structure Matrices, and more.
Conducts maximum likelihood analysis and simulation of the protracted birth-death model of diversification. See Etienne, R.S. & J. Rosindell 2012 <doi:10.1093/sysbio/syr091>; Lambert, A., H. Morlon & R.S. Etienne 2014, <doi:10.1007/s00285-014-0767-x>; Etienne, R.S., H. Morlon & A. Lambert 2014, <doi:10.1111/evo.12433>.
Priority-ElasticNet extends the Priority-LASSO method (Klau et al. (2018) <doi:10.1186/s12859-018-2344-6>) by incorporating the ElasticNet penalty, allowing for both L1 and L2 regularization. This approach fits successive ElasticNet models for several blocks of (omics) data with different priorities, using the predicted values from each block as an offset for the subsequent block. It also offers robust options to handle block-wise missingness in multi-omics data, improving the flexibility and applicability of the model in the presence of incomplete datasets.
This package provides a unified method, called M statistic, is provided for detecting phylogenetic signals in continuous traits, discrete traits, and multi-trait combinations. Blomberg and Garland (2002) <doi:10.1046/j.1420-9101.2002.00472.x> provided a widely accepted statistical definition of the phylogenetic signal, which is the "tendency for related species to resemble each other more than they resemble species drawn at random from the tree". The M statistic strictly adheres to the definition of phylogenetic signal, formulating an index and developing a method of testing in strict accordance with the definition, instead of relying on correlation analysis or evolutionary models. The novel method equivalently expressed the textual definition of the phylogenetic signal as an inequality equation of the phylogenetic and trait distances and constructed the M statistic. The M statistic implemented in this package is based on the methodology described in Yao and Yuan (2025) <doi:10.1002/ece3.71106>. If you use this method in your research, please cite the paper.
Computes the Danish Pesticide Load Indicator as described in Kudsk et al. (2018) <doi:10.1016/j.landusepol.2017.11.010> and Moehring et al. (2019) <doi:10.1016/j.scitotenv.2018.07.287> for pesticide use data. Additionally offers the possibility to directly link pesticide use data to pesticide properties given access to the Pesticide properties database (Lewis et al., 2016) <doi:10.1080/10807039.2015.1133242>.
This package provides a set of functions designed to calculate the standardised precipitation and standardised precipitation evapotranspiration indices using NASA POWER data as described in Blain et al. (2023) <doi:10.2139/ssrn.4442843>. These indices are calculated using a reference data source. The functions verify if the indices estimates meet the assumption of normality and how well NASA POWER estimates represent real-world data. Indices are calculated in a routine mode. Potential evapotranspiration amounts and the difference between rainfall and potential evapotranspiration are also calculated. The functions adopt a basic time scale that splits each month into four periods. Days 1 to 7, days 8 to 14, days 15 to 21, and days 22 to 28, 29, 30, or 31, where TS=4 corresponds to a 1-month length moving window (calculated 4 times per month) and TS=48 corresponds to a 12-month length moving window (calculated 4 times per month).
Fits penalized generalized estimating equations to longitudinal data with high-dimensional covariates.