Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Enrichment analysis enables researchers to uncover mechanisms underlying a phenotype. However, conventional methods for enrichment analysis do not take into account protein-protein interaction information, resulting in incomplete conclusions. pathfindR is a tool for enrichment analysis utilizing active subnetworks. The main function identifies active subnetworks in a protein-protein interaction network using a user-provided list of genes and associated p values. It then performs enrichment analyses on the identified subnetworks, identifying enriched terms (i.e. pathways or, more broadly, gene sets) that possibly underlie the phenotype of interest. pathfindR also offers functionalities to cluster the enriched terms and identify representative terms in each cluster, to score the enriched terms per sample and to visualize analysis results. The enrichment, clustering and other methods implemented in pathfindR are described in detail in Ulgen E, Ozisik O, Sezerman OU. 2019. pathfindR': An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks. Front. Genet. <doi:10.3389/fgene.2019.00858>.
Data and analysis from an experiment with improving touch typing speed, using the tDCS PlatoWork headset produced by PlatoScience.
This package provides a toolbox for deterministic, probabilistic and privacy-preserving record linkage techniques. Combines the functionality of the Merge ToolBox (<https://www.record-linkage.de>) with current privacy-preserving techniques.
Estimate specification models for the state-dependent level of an optimal quantile/expectile forecast. Wald Tests and the test of overidentifying restrictions are implemented. Plotting of the estimated specification model is possible. The package contains two data sets with forecasts and realizations: the daily accumulated precipitation at London, UK from the high-resolution model of the European Centre for Medium-Range Weather Forecasts (ECMWF, <https://www.ecmwf.int/>) and GDP growth Greenbook data by the US Federal Reserve. See Schmidt, Katzfuss and Gneiting (2015) <arXiv:1506.01917> for more details on the identification and estimation of a directive behind a point forecast.
Determine minimal protein set explaining peptide spectrum matches. Utility functions for creating fasta amino acid databases with decoys and contaminants. Peptide false discovery rate estimation for target decoy search results on psm, precursor, peptide and protein level. Computing dynamic swath window sizes based on MS1 or MS2 signal distributions.
This package provides methods for spatial predictive modeling, especially for spatial distribution models. This includes algorithms for model fitting and prediction, as well as methods for model evaluation.
This package provides a collection of functions that primarily produce graphics to aid in a Propensity Score Analysis (PSA). Functions include: cat.psa and box.psa to test balance within strata of categorical and quantitative covariates, circ.psa for a representation of the estimated effect size by stratum, loess.psa that provides a graphic and loess based effect size estimate, and various balance functions that provide measures of the balance achieved via a PSA in a categorical covariate.
Systematic conservation prioritization using mixed integer linear programming (MILP). It provides a flexible interface for building and solving conservation planning problems. Once built, conservation planning problems can be solved using a variety of commercial and open-source exact algorithm solvers. By using exact algorithm solvers, solutions can be generated that are guaranteed to be optimal (or within a pre-specified optimality gap). Furthermore, conservation problems can be constructed to optimize the spatial allocation of different management actions or zones, meaning that conservation practitioners can identify solutions that benefit multiple stakeholders. To solve large-scale or complex conservation planning problems, users should install the Gurobi optimization software (available from <https://www.gurobi.com/>) and the gurobi R package (see Gurobi Installation Guide vignette for details). Users can also install the IBM CPLEX software (<https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer>) and the cplexAPI R package (available at <https://github.com/cran/cplexAPI>). Additionally, the rcbc R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to generate solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). For further details, see Hanson et al. (2025) <doi:10.1111/cobi.14376>.
Scored responses and responses times from the Canadian subsample of the PISA 2018 assessment, accessible as the "Cognitive items total time/visits data file" by OECD (2020) <https://www.oecd.org/pisa/data/2018database/>.
To calculate the raw, central and standardized moments from distribution parameters. To solve the distribution parameters based on user-provided mean, standard deviation, skewness and kurtosis. Normal, skew-normal, skew-t and Tukey g-&-h distributions are supported, for now.
This package provides a set of functions for reading and writing PC-Axis files, used by different statistical organizations around the globe for data dissemination.
Computes the D', Wn, and conditional asymmetric linkage disequilibrium (ALD) measures for pairs of genetic loci. Performs these linkage disequilibrium (LD) calculations on phased genotype data recorded using Genotype List (GL) String or columnar formats. Alternatively, generates expectation-maximization (EM) estimated haplotypes from phased data, or performs LD calculations on EM estimated haplotypes. Performs sign tests comparing LD values for phased and unphased datasets, and generates heat-maps for each LD measure. Described by Osoegawa et al. (2019a) <doi:10.1016/j.humimm.2019.01.010>, and Osoegawa et. al. (2019b) <doi:10.1016/j.humimm.2019.05.018>.
This package provides various styles of function chaining methods: Pipe operator, Pipe object, and pipeline function, each representing a distinct pipeline model yet sharing almost a common set of features: A value can be piped to the first unnamed argument of a function and to dot symbol in an enclosed expression. The syntax is designed to make the pipeline more readable and friendly to a wide range of operations.
This package provides a cohesive framework for the spectral and spatial analysis of colour described in Maia, Eliason, Bitton, Doucet & Shawkey (2013) <doi:10.1111/2041-210X.12069> and Maia, Gruson, Endler & White (2019) <doi:10.1111/2041-210X.13174>.
This package provides functions for calculating and analyzing the proliferative index (PI) from an RNA-seq dataset. As described in Ramaker & Lasseigne, et al. bioRxiv, 2016 <doi:10.1101/063057>.
Loads and processes huge text corpora processed with the sally toolbox (<http://www.mlsec.org/sally/>). sally acts as a very fast preprocessor which splits the text files into tokens or n-grams. These output files can then be read with the PRISMA package which applies testing-based token selection and has some replicate-aware, highly tuned non-negative matrix factorization and principal component analysis implementation which allows the processing of very big data sets even on desktop machines.
This package performs demographic, bifurcation and evolutionary analysis of physiologically structured population models, which is a class of models that consistently translates continuous-time models of individual life history to the population level. A model of individual life history has to be implemented specifying the individual-level functions that determine the life history, such as development and mortality rates and fecundity. M.A. Kirkilionis, O. Diekmann, B. Lisser, M. Nool, B. Sommeijer & A.M. de Roos (2001) <doi:10.1142/S0218202501001264>. O.Diekmann, M.Gyllenberg & J.A.J.Metz (2003) <doi:10.1016/S0040-5809(02)00058-8>. A.M. de Roos (2008) <doi:10.1111/j.1461-0248.2007.01121.x>.
Phylogenetic comparative methods represent models of continuous trait data associated with the tips of a phylogenetic tree. Examples of such models are Gaussian continuous time branching stochastic processes such as Brownian motion (BM) and Ornstein-Uhlenbeck (OU) processes, which regard the data at the tips of the tree as an observed (final) state of a Markov process starting from an initial state at the root and evolving along the branches of the tree. The PCMBase R package provides a general framework for manipulating such models. This framework consists of an application programming interface for specifying data and model parameters, and efficient algorithms for simulating trait evolution under a model and calculating the likelihood of model parameters for an assumed model and trait data. The package implements a growing collection of models, which currently includes BM, OU, BM/OU with jumps, two-speed OU as well as mixed Gaussian models, in which different types of the above models can be associated with different branches of the tree. The PCMBase package is limited to trait-simulation and likelihood calculation of (mixed) Gaussian phylogenetic models. The PCMFit package provides functionality for inference of these models to tree and trait data. The package web-site <https://venelin.github.io/PCMBase/> provides access to the documentation and other resources.
Evaluate the predictive performance of an existing (i.e. previously developed) prediction/ prognostic model given relevant information about the existing prediction model (e.g. coefficients) and a new dataset. Provides a range of model updating methods that help tailor the existing model to the new dataset; see Su et al. (2018) <doi:10.1177/0962280215626466>. Techniques to aggregate multiple existing prediction models on the new data are also provided; see Debray et al. (2014) <doi:10.1002/sim.6080> and Martin et al. (2018) <doi:10.1002/sim.7586>).
This package provides tools for interacting with data from experiments done in microtiter plates. Easily read in plate-shaped data and convert it to tidy format, combine plate-shaped data with tidy data, and view tidy data in plate shape.
This package provides a comprehensive framework for planning and executing analyses in R. It provides a structured approach to running the same function multiple times with different arguments, executing multiple functions on the same datasets, and creating systematic analyses across multiple strata or variables. The framework is particularly useful for applying the same analysis across multiple strata (e.g., locations, age groups), running statistical methods on multiple variables (e.g., exposures, outcomes), generating multiple tables or graphs for reports, and creating systematic surveillance analyses. Key features include efficient data management, structured analysis planning, flexible execution options, built-in debugging tools, and hash-based caching.
An implementation of a hybrid method of person-oriented method and perturbation on the model. Pompom is the initials of the two methods. The hybrid method will provide a multivariate intraindividual variability metric (iRAM). The person-oriented method used in this package refers to uSEM (unified structural equation modeling, see Kim et al., 2007, Gates et al., 2010 and Gates et al., 2012 for details). Perturbation on the model was conducted according to impulse response analysis introduced in Lutkepohl (2007). Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007) <doi:10.1002/hbm.20259>. Gates, K. M., Molenaar, P. C. M., Hillary, F. G., Ram, N., & Rovine, M. J. (2010) <doi:10.1016/j.neuroimage.2009.12.117>. Gates, K. M., & Molenaar, P. C. M. (2012) <doi:10.1016/j.neuroimage.2012.06.026>. Lutkepohl, H. (2007, ISBN:3540262393).
Levels and changes of productivity and profitability are measured with various indices. The package contains the multiplicatively complete Färe-Primont, Fisher, Hicks-Moorsteen, Laspeyres, Lowe, and Paasche indices, as well as the classic Malmquist productivity index. Färe-Primont and Lowe indices verify the transitivity property and can therefore be used for multilateral or multitemporal comparison. Fisher, Hicks-Moorsteen, Laspeyres, Malmquist, and Paasche indices are not transitive and are only to be used for binary comparison. All indices can also be decomposed into different components, providing insightful information on the sources of productivity and profitability changes. In the use of Malmquist productivity index, the technological change index can be further decomposed into bias technological change components. The package also allows to prohibit technological regression (negative technological change). In the case of the Fisher, Hicks-Moorsteen, Laspeyres, Paasche and the transitive Färe-Primont and Lowe indices, it is furthermore possible to rule out technological change. Deflated shadow prices can also be obtained. Besides, the package allows parallel computing as an option, depending on the user's computer configuration. All computations are carried out with the nonparametric Data Envelopment Analysis (DEA), and several assumptions regarding returns to scale are available. All DEA linear programs are implemented using lp_solve'.
This package provides a small, dependency-free way to generate random names. Methods provided include the adjective-surname approach of Docker containers ('<https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go>'), and combinations of common English or Spanish words.