Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains various tools for conveniently downloading and editing taxon-specific datasets from the Paleobiology Database <https://paleobiodb.org>, extracting information on abundance, temporal distribution of subtaxa and taxonomic diversity through deep time, and visualizing these data in relation to phylogeny and stratigraphy.
Identifies differences between versions of a package. Specifically, the functions help determine if there are breaking changes from one package version to the next. The package also includes a stability assessment, to help you determine the overall stability of a package, or even an entire repository.
Automatic estimation of number of principal components in PCA with PEnalized SEmi-integrated Likelihood (PESEL). See Piotr Sobczyk, Malgorzata Bogdan, Julie Josse "Bayesian dimensionality reduction with PCA using penalized semi-integrated likelihood" (2017) <doi:10.1080/10618600.2017.1340302>.
Conduct a priori power analyses via Monte-Carlo style data simulation for linear and generalized linear mixed-effects models (LMMs/GLMMs). Provides a user-friendly workflow with helper functions to easily define fixed and random effects as well as diagnostic functions to evaluate the adequacy of the results of the power analysis.
This package provides a small, dependency-free way to generate random names. Methods provided include the adjective-surname approach of Docker containers ('<https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go>'), and combinations of common English or Spanish words.
Integrated species distribution modeling is a rising field in quantitative ecology thanks to significant rises in the quantity of data available, increases in computational speed and the proven benefits of using such models. Despite this, the general software to help ecologists construct such models in an easy-to-use framework is lacking. We therefore introduce the R package PointedSDMs': which provides the tools to help ecologists set up integrated models and perform inference on them. There are also functions within the package to help run spatial cross-validation for model selection, as well as generic plotting and predicting functions. An introduction to these methods is discussed in Issac, Jarzyna, Keil, Dambly, Boersch-Supan, Browning, Freeman, Golding, Guillera-Arroita, Henrys, Jarvis, Lahoz-Monfort, Pagel, Pescott, Schmucki, Simmonds and Oâ Hara (2020) <doi:10.1016/j.tree.2019.08.006>.
This package provides functions and mined database from UniProt focusing on post-translational modifications to do single enrichment analysis (SEA) and protein set enrichment analysis (PSEA). Payman Nickchi, Uladzislau Vadadokhau, Mehdi Mirzaie, Marc Baumann, Amir Ata Saei, Mohieddin Jafari (2025) <doi:10.1002/pmic.202400238>.
This package provides a set of concise and efficient tools for statistical production. Can also be used for data management. In statistical production, you deal with complex data and need to control your process at each step of your work. Concise functions are very helpful, because you do not hesitate to use them. The following functions are included in the package. dup checks duplicates. miss checks missing values. tac computes contingency table of all columns. toc compares two tables, spotting significant deviations. chi2_find compares columns within a data.frame, spotting related categories of (a more complex function).
The use of overparameterization is proposed with combinatorial analysis to test a broader spectrum of possible ARIMA models. In the selection of ARIMA models, the most traditional methods such as correlograms or others, do not usually cover many alternatives to define the number of coefficients to be estimated in the model, which represents an estimation method that is not the best. The popstudy package contains several tools for statistical analysis in demography and time series based in Shryock research (Shryock et. al. (1980) <https://books.google.co.cr/books?id=8Oo6AQAAMAAJ>).
This package provides a toolbox for deterministic, probabilistic and privacy-preserving record linkage techniques. Combines the functionality of the Merge ToolBox (<https://www.record-linkage.de>) with current privacy-preserving techniques.
This package provides a quadratic time dynamic programming algorithm can be used to compute an approximate solution to the problem of finding the most likely changepoints with respect to the Poisson likelihood, subject to a constraint on the number of segments, and the changes which must alternate: up, down, up, down, etc. For more info read <http://proceedings.mlr.press/v37/hocking15.html> "PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data" by TD Hocking et al, proceedings of ICML2015.
Allows the comparison of data cohorts (DC) against a Counter Factual Model (CFM) and measures the difference in terms of an efficacy parameter. Allows the application of Personalised Synthetic Controls.
To take nested function calls and convert them to a more readable form using pipes from package magrittr'.
This package implements a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.
The aim of postpack is to provide the infrastructure for a standardized workflow for mcmc.list objects. These objects can be used to store output from models fitted with Bayesian inference using JAGS', WinBUGS', OpenBUGS', NIMBLE', Stan', or even custom MCMC algorithms. Although the coda R package provides some methods for these objects, it is somewhat limited in easily performing post-processing tasks for specific nodes. Models are ever increasing in their complexity and the number of tracked nodes, and oftentimes a user may wish to summarize/diagnose sampling behavior for only a small subset of nodes at a time for a particular question or figure. Thus, many postpack functions support performing tasks on a subset of nodes, where the subset is specified with regular expressions. The functions in postpack streamline the extraction, summarization, and diagnostics of specific monitored nodes after model fitting. Further, because there is rarely only ever one model under consideration, postpack scales efficiently to perform the same tasks on output from multiple models simultaneously, facilitating rapid assessment of model sensitivity to changes in assumptions.
Carries out model-based clustering or classification using parsimonious Gaussian mixture models. McNicholas and Murphy (2008) <doi:10.1007/s11222-008-9056-0>, McNicholas (2010) <doi:10.1016/j.jspi.2009.11.006>, McNicholas and Murphy (2010) <doi:10.1093/bioinformatics/btq498>, McNicholas et al. (2010) <doi:10.1016/j.csda.2009.02.011>.
We provide several algorithms to compute the genotype ancestry scores (such as eigenvector projections) in the case where highly correlated individuals are involved.
An R interface to pikchr (<https://pikchr.org>, pronounced â pictureâ ), a PIC'-like markup language for creating diagrams within technical documentation. Originally developed by Brian Kernighan, PIC has been adapted into pikchr by D. Richard Hipp, the creator of SQLite'. pikchr is designed to be embedded in fenced code blocks of Markdown or other documentation markup languages, making it ideal for generating diagrams in text-based formats. This package allows R users to seamlessly integrate the descriptive syntax of pikchr for diagram creation directly within the R environment.
Early generation breeding trials are to be conducted in multiple environments where it may not be possible to replicate all the lines in each environment due to scarcity of resources. For such situations, partially replicated (p-Rep) designs have wide application potential as only a proportion of the test lines are replicated at each environment. A collection of several utility functions related to p-Rep designs have been developed. Here, the package contains six functions for a complete stepwise analytical study of these designs. Five functions pRep1(), pRep2(), pRep3(), pRep4() and pRep5(), are used to generate five new series of p-Rep designs and also compute average variance factors and canonical efficiency factors of generated designs. A fourth function NCEV() is used to generate incidence matrix (N), information matrix (C), canonical efficiency factor (E) and average variance factor (V). This function is general in nature and can be used for studying the characterization properties of any block design. A construction procedure for p-Rep designs was given by Williams et al.(2011) <doi:10.1002/bimj.201000102> which was tedious and time consuming. Here, in this package, five different methods have been given to generate p-Rep designs easily.
Conducts maximum likelihood analysis and simulation of the protracted birth-death model of diversification. See Etienne, R.S. & J. Rosindell 2012 <doi:10.1093/sysbio/syr091>; Lambert, A., H. Morlon & R.S. Etienne 2014, <doi:10.1007/s00285-014-0767-x>; Etienne, R.S., H. Morlon & A. Lambert 2014, <doi:10.1111/evo.12433>.
NOTE: PARAMLINK HAS BEEN SUPERSEDED BY THE PEDSUITE PACKAGES (<https://magnusdv.github.io/pedsuite/>). PARAMLINK IS MAINTAINED ONLY FOR LEGACY PURPOSES AND SHOULD NOT BE USED IN NEW PROJECTS. A suite of tools for analysing pedigrees with marker data, including parametric linkage analysis, forensic computations, relatedness analysis and marker simulations. The core of the package is an implementation of the Elston-Stewart algorithm for pedigree likelihoods, extended to allow mutations as well as complex inbreeding. Features for linkage analysis include singlepoint LOD scores, power analysis, and multipoint analysis (the latter through a wrapper to the MERLIN software). Forensic applications include exclusion probabilities, genotype distributions and conditional simulations. Data from the Familias software can be imported and analysed in paramlink'. Finally, paramlink offers many utility functions for creating, manipulating and plotting pedigrees with or without marker data (the actual plotting is done by the kinship2 package).
Algorithms and subroutines for patient-reported outcome data analysis.
This package creates and manages a provenance graph corresponding to the provenance created by the rdtLite package, which collects provenance from R scripts. rdtLite is available on CRAN. The provenance format is an extension of the W3C PROV JSON format (<https://www.w3.org/Submission/2013/SUBM-prov-json-20130424/>). The extended JSON provenance format is described in <https://github.com/End-to-end-provenance/ExtendedProvJson>.
This package provides functions and datasets to support Valliant, Dever, and Kreuter (2018), <doi:10.1007/978-3-319-93632-1>, "Practical Tools for Designing and Weighting Survey Samples". Contains functions for sample size calculation for survey samples using stratified or clustered one-, two-, and three-stage sample designs, and single-stage audit sample designs. Functions are included that will group geographic units accounting for distances apart and measures of size. Other functions compute variance components for multistage designs, sample sizes in two-phase designs, and a stopping rule for ending data collection. A number of example data sets are included.