Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of (wrapper) functions the creator found useful for quickly placing data summaries and formatted regression results into .Rnw or .Rmd files. Functions for generating commonly used graphics, such as receiver operating curves or Bland-Altman plots, are also provided by qwraps2'. qwraps2 is a updated version of a package qwraps'. The original version qwraps was never submitted to CRAN but can be found at <https://github.com/dewittpe/qwraps/>. The implementation and limited scope of the functions within qwraps2 <https://github.com/dewittpe/qwraps2/> is fundamentally different from qwraps'.
This package provides three Quarto website templates as an R project, which are commonly used by academics. Templates for personal websites and course/workshop websites are included, as well as a template with minimal content for customization.
The modeling and prediction of graph-associated time series(GATS) based on continuous time quantum walk. This software is mainly used for feature extraction, modeling, prediction and result evaluation of GATS, including continuous time quantum walk simulation, feature selection, regression analysis, time series prediction, and series fit calculation. A paper is attached to the package for reference.
Quick Response codes (QR codes) are a type of matrix bar code and can be used to authenticate transactions, provide access to multi-factor authentication services and enable general data transfer in an image. QR codes use four standardized encoding modes (numeric, alphanumeric, byte/binary, and kanji) to efficiently store data. Matrix barcode generation is performed efficiently in C via the included libqrencoder library created by Kentaro Fukuchi.
Functionality to read, recode, and transcode data as used in quantitative language comparison, specifically to deal with multilingual orthographic variation (Moran & Cysouw (2018) <doi:10.5281/zenodo.1296780>) and with the recoding of nominal data.
An implementation of Quantitative Fatty Acid Signature Analysis (QFASA) in R. QFASA is a method of estimating the diet composition of predators. The fundamental unit of information in QFASA is a fatty acid signature (signature), which is a vector of proportions describing the composition of fatty acids within lipids. Signature data from at least one predator and from samples of all potential prey types are required. Calibration coefficients, which adjust for the differential metabolism of individual fatty acids by predators, are also required. Given those data inputs, a predator signature is modeled as a mixture of prey signatures and its diet estimate is obtained as the mixture that minimizes a measure of distance between the observed and modeled signatures. A variety of estimation options and simulation capabilities are implemented. Please refer to the vignette for additional details and references.
Estimate quadratic vector autoregression models with the strong hierarchy using the Regularization Algorithm under Marginality Principle (RAMP) by Hao et al. (2018) <doi:10.1080/01621459.2016.1264956>, compare the performance with linear models, and construct networks with partial derivatives.
This package provides functions/methods to accompany the book Quantitative Risk Management: Concepts, Techniques and Tools by Alexander J. McNeil, Ruediger Frey, and Paul Embrechts.
This package provides comprehensive methods for testing, estimating, and conducting uniform inference on quantile treatment effects (QTEs) in sharp regression discontinuity (RD) designs, incorporating covariates and implementing robust bias correction methods of Qu, Yoon, Perron (2024) <doi:10.1162/rest_a_01168>.
Plotting functions for visualising textual data. Extends quanteda and related packages with plot methods designed specifically for text data, textual statistics, and models fit to textual data. Plot types include word clouds, lexical dispersion plots, scaling plots, network visualisations, and word keyness plots.
This package implements a suite of tools for outlier detection and treatment in data mining. It includes univariate methods (Z-score, Interquartile Range), multivariate detection using Mahalanobis distance, and density-based detection (Local Outlier Factor) via the dbscan package. It also provides functions for visualization using ggplot2 and data cleaning via Winsorization.
Quantile regression (QR) for Linear Mixed-Effects Models via the asymmetric Laplace distribution (ALD). It uses the Stochastic Approximation of the EM (SAEM) algorithm for deriving exact maximum likelihood estimates and full inference results for the fixed-effects and variance components. It also provides graphical summaries for assessing the algorithm convergence and fitting results.
This package provides methods for detecting structural breaks, determining the number of breaks, and estimating break locations in linear quantile regression, using one or multiple quantiles, based on Qu (2008) and Oka and Qu (2011). Applicable to both time series and repeated cross-sectional data. The main function is rq.break(). . References for detailed theoretical and empirical explanations: . (1) Qu, Z. (2008). "Testing for Structural Change in Regression Quantiles." Journal of Econometrics, 146(1), 170-184 <doi:10.1016/j.jeconom.2008.08.006> . (2) Oka, T., and Qu, Z. (2011). "Estimating Structural Changes in Regression Quantiles." Journal of Econometrics, 162(2), 248-267 <doi:10.1016/j.jeconom.2011.01.005>.
This package provides functions for making run charts [Anhoej, Olesen (2014) <doi:10.1371/journal.pone.0113825>] and basic Shewhart control charts [Mohammed, Worthington, Woodall (2008) <doi:10.1136/qshc.2004.012047>] for measure and count data. The main function, qic(), creates run and control charts and has a simple interface with a rich set of options to control data analysis and plotting, including options for automatic data aggregation by subgroups, easy analysis of before-and-after data, exclusion of one or more data points from analysis, and splitting charts into sequential time periods. Missing values and empty subgroups are handled gracefully.
The NOT functions, R tricks and a compilation of some simple quick plus often used R codes to improve your scripts. Improve the quality and reproducibility of R scripts.
This package provides a copula-based measure for quantifying asymmetry in dependence and associations. Documentation and theory about qad is provided by the paper by Junker, Griessenberger & Trutschnig (2021, <doi:10.1016/j.csda.2020.107058>), and the paper by Trutschnig (2011, <doi:10.1016/j.jmaa.2011.06.013>).
This package provides functions to Simultaneously Infer Causal Graphs and Genetic Architecture. Includes acyclic and cyclic graphs for data from an experimental cross with a modest number (<10) of phenotypes driven by a few genetic loci (QTL). Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems Genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Annals of Applied Statistics 4: 320-339. <doi:10.1214/09-AOAS288>.
Empirical adjustment of the distribution of variables originating from (regional) climate model simulations using quantile mapping.
This function aims to calculate risk of developing cardiovascular disease of individual patients in next 10 years. This unofficial package was based on published open-sourced free risk prediction algorithm QRISK3-2017 <https://qrisk.org/src.php>.
This is the implementation of quantile regression forests for the fast random forest package ranger'.
Given a dataset, the user is invited to utilize the Empirical Cumulative Distribution Function (ECDF) to guess interactively the mean and the mean deviation. Thereafter, using the quadratic curve the user can guess the Root Mean Squared Deviation (RMSD) and visualize the standard deviation (SD). For details, see Sarkar and Rashid (2019)<doi:10.3126/njs.v3i0.25574>, Have You Seen the Standard Deviaton?, Nepalese Journal of Statistics, Vol. 3, 1-10.
An easy framework to set a quality control workflow on a dataset. Includes a various range of functions that allow to establish an adaptable data quality control.
For fitting N-mixture models using either FFT or asymptotic approaches. FFT N-mixture models extend the work of Cowen et al. (2017) <doi:10.1111/biom.12701>. Asymptotic N-mixture models extend the work of Dail and Madsen (2011) <doi:10.1111/j.1541-0420.2010.01465.x>, to consider asymptotic solutions to the open population N-mixture models. The FFT models are derived and described in "Parker, M.R.P., Elliott, L., Cowen, L.L.E. (2022). Computational efficiency and precision for replicated-count and batch-marked hidden population models [Manuscript in preparation]. Department of Statistics and Actuarial Sciences, Simon Fraser University.". The asymptotic models are derived and described in: "Parker, M.R.P., Elliott, L., Cowen, L.L.E., Cao, J. (2022). Fast asymptotic solutions for N-mixtures on large populations [Manuscript in preparation]. Department of Statistics and Actuarial Sciences, Simon Fraser University.".
The queueing model of visual search models the accuracy and response time data in a visual search experiment using queueing models with finite customer population and stopping criteria of completing the service for finite number of customers. It implements the conceptualization of a hybrid model proposed by Moore and Wolfe (2001), in which visual stimuli enter the processing one after the other and then are identified in parallel. This package provides functions that simulate the specified queueing process and calculate the Wasserstein distance between the empirical response times and the model prediction.