Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An algorithm which can be used to determine an objective threshold for signal-noise separation in large random matrices (correlation matrices, mutual information matrices, network adjacency matrices) is provided. The package makes use of the results of Random Matrix Theory (RMT). The algorithm increments a suppositional threshold monotonically, thereby recording the eigenvalue spacing distribution of the matrix. According to RMT, that distribution undergoes a characteristic change when the threshold properly separates signal from noise. By using the algorithm, the modular structure of a matrix - or of the corresponding network - can be unraveled.
Within this package the XML-RPC API to NEOS <https://neos-server.org/neos/> is implemented. This enables the user to pass optimization problems to NEOS and retrieve results within R.
This package provides a toolkit for the analysis of high-dimensional repeated measurements, providing functions for outlier detection, differential expression analysis, gene-set tests, and binary random data generation.
This package provides methods for model building and model evaluation of mixed effects models using Monolix <https://monolix.lixoft.com>. Monolix is a software tool for nonlinear mixed effects modeling that must have been installed in order to use Rsmlx'. Among other tasks, Rsmlx provides a powerful tool for automatic PK model building, performs statistical tests for model assessment, bootstrap simulation and likelihood profiling for computing confidence intervals. Rsmlx also proposes several automatic covariate search methods for mixed effects models.
Density discontinuity testing (a.k.a. manipulation testing) is commonly employed in regression discontinuity designs and other program evaluation settings to detect perfect self-selection (manipulation) around a cutoff where treatment/policy assignment changes. This package implements manipulation testing procedures using the local polynomial density estimators: rddensity() to construct test statistics and p-values given a prespecified cutoff, rdbwdensity() to perform data-driven bandwidth selection, and rdplotdensity() to construct density plots.
This package provides a Bayesian-weighted estimator and two unweighted estimators are developed to estimate the number of newly found rare species in additional ecological samples. Among these methods, the Bayesian-weighted estimator and an unweighted (Chao-derived) estimator are of high accuracy and recommended for practical applications. Technical details of the proposed estimators have been well described in the following paper: Shen TJ, Chen YH (2018) A Bayesian weighted approach to predicting the number of newly discovered rare species. Conservation Biology, In press.
Wraps the Ollama <https://ollama.com> API, which can be used to communicate with generative large language models locally.
An extremely simple stack data type, implemented with R6 classes. The size of the stack increases as needed, and the amortized time complexity is O(1). The stack may contain arbitrary objects.
Fits a multivariate value-added model (VAM), see Broatch, Green, and Karl (2018) <doi:10.32614/RJ-2018-033> and Broatch and Lohr (2012) <doi:10.3102/1076998610396900>, with normally distributed test scores and a binary outcome indicator. A pseudo-likelihood approach, Wolfinger (1993) <doi:10.1080/00949659308811554>, is used for the estimation of this joint generalized linear mixed model. The inner loop of the pseudo-likelihood routine (estimation of a linear mixed model) occurs in the framework of the EM algorithm presented by Karl, Yang, and Lohr (2013) <DOI:10.1016/j.csda.2012.10.004>. This material is based upon work supported by the National Science Foundation under grants DRL-1336027 and DRL-1336265.
Imports real-time thermo cycler (qPCR) data from Real-time PCR Data Markup Language (RDML) and transforms to the appropriate formats of the qpcR and chipPCR packages, as described in Rodiger et al. (2017) <doi:10.1093/bioinformatics/btx528>. Contains a dendrogram visualization for the structure of RDML object and GUI for RDML editing.
Real-time quantitative polymerase chain reaction (qPCR) data by Rutledge et al. (2004) <doi:10.1093/nar/gnh177> in tidy format. The data comprises a six-point, ten-fold dilution series, repeated in five independent runs, for two different amplicons. In each run, each standard concentration is replicated four times. For the original raw data file see the Supplementary Data section: <https://academic.oup.com/nar/article/32/22/e178/2375678#supplementary-data>.
Show physics, math and engineering students how an ODE solver is made and how effective R classes can be for the construction of the equations that describe natural phenomena. Inspiration for this work comes from the book on "Computer Simulations in Physics" by Harvey Gould, Jan Tobochnik, and Wolfgang Christian. Book link: <http://www.compadre.org/osp/items/detail.cfm?ID=7375>.
Provide estimation and data generation tools for the quantile generalized beta regression model. For details, see Bourguignon, Gallardo and Saulo <arXiv:2110.04428> The package also provides tools to perform covariates selection.
Provide function for get data from YouTube Data API <https://developers.google.com/youtube/v3/docs/>, YouTube Analytics API <https://developers.google.com/youtube/analytics/reference/> and YouTube Reporting API <https://developers.google.com/youtube/reporting/v1/reports>.
BEAST is a Bayesian estimator of abrupt change, seasonality, and trend for decomposing univariate time series and 1D sequential data. Interpretation of time series depends on model choice; different models can yield contrasting or contradicting estimates of patterns, trends, and mechanisms. BEAST alleviates this by abandoning the single-best-model paradigm and instead using Bayesian model averaging over many competing decompositions. It detects and characterizes abrupt changes (changepoints, breakpoints, structural breaks, joinpoints), cyclic or seasonal variation, and nonlinear trends. BEAST not only detects when changes occur but also quantifies how likely the changes are true. It estimates not just piecewise linear trends but also arbitrary nonlinear trends. BEAST is generically applicable to any real-valued time series, such as those from remote sensing, economics, climate science, ecology, hydrology, and other environmental and biological systems. Example applications include identifying regime shifts in ecological data, mapping forest disturbance and land degradation from satellite image time series, detecting market trends in economic indicators, pinpointing anomalies and extreme events in climate records, and analyzing system dynamics in biological time series. Details are given in Zhao et al. (2019) <doi:10.1016/j.rse.2019.04.034>.
Interface to SWI'-'Prolog', <https://www.swi-prolog.org/>. This package is normally not loaded directly, please refer to package rolog instead. The purpose of this package is to provide the Prolog runtime on systems that do not have a software installation of SWI'-'Prolog'.
This package provides functions for estimating models using a Hierarchical Bayesian (HB) framework. The flexibility comes in allowing the user to specify the likelihood function directly instead of assuming predetermined model structures. Types of models that can be estimated with this code include the family of discrete choice models (Multinomial Logit, Mixed Logit, Nested Logit, Error Components Logit and Latent Class) as well ordered response models like ordered probit and ordered logit. In addition, the package allows for flexibility in specifying parameters as either fixed (non-varying across individuals) or random with continuous distributions. Parameter distributions supported include normal, positive/negative log-normal, positive/negative censored normal, and the Johnson SB distribution. Kenneth Train's Matlab and Gauss code for doing Hierarchical Bayesian estimation has served as the basis for a few of the functions included in this package. These Matlab/Gauss functions have been rewritten to be optimized within R. Considerable code has been added to increase the flexibility and usability of the code base. Train's original Gauss and Matlab code can be found here: <http://elsa.berkeley.edu/Software/abstracts/train1006mxlhb.html> See Train's chapter on HB in Discrete Choice with Simulation here: <http://elsa.berkeley.edu/books/choice2.html>; and his paper on using HB with non-normal distributions here: <http://eml.berkeley.edu//~train/trainsonnier.pdf>. The authors would also like to thank the invaluable contributions of Stephane Hess and the Choice Modelling Centre: <https://cmc.leeds.ac.uk/>.
Software for genomic prediction with the RR-BLUP mixed model (Endelman 2011, <doi:10.3835/plantgenome2011.08.0024>). One application is to estimate marker effects by ridge regression; alternatively, BLUPs can be calculated based on an additive relationship matrix or a Gaussian kernel.
Search R files for not installed packages and run install.packages.
Area under the receiver operating characteristic curves (AUC) statistic for significance test. Variance and covariance of AUC values used to assess the 95% Confidence interval (CI) and p-value of the AUC difference for both nested and non-nested model.
Enables researchers to sample redistricting plans from a pre-specified target distribution using Sequential Monte Carlo and Markov Chain Monte Carlo algorithms. The package allows for the implementation of various constraints in the redistricting process such as geographic compactness and population parity requirements. Tools for analysis such as computation of various summary statistics and plotting functionality are also included. The package implements the SMC algorithm of McCartan and Imai (2023) <doi:10.1214/23-AOAS1763>, the enumeration algorithm of Fifield, Imai, Kawahara, and Kenny (2020) <doi:10.1080/2330443X.2020.1791773>, the Flip MCMC algorithm of Fifield, Higgins, Imai and Tarr (2020) <doi:10.1080/10618600.2020.1739532>, the Merge-split/Recombination algorithms of Carter et al. (2019) <doi:10.48550/arXiv.1911.01503> and DeFord et al. (2021) <doi:10.1162/99608f92.eb30390f>, and the Short-burst optimization algorithm of Cannon et al. (2020) <doi:10.48550/arXiv.2011.02288>.
Various functions for querying and reshaping dependency trees, as for instance created with the spacyr or udpipe packages. This enables the automatic extraction of useful semantic relations from texts, such as quotes (who said what) and clauses (who did what). Method proposed in Van Atteveldt et al. (2017) <doi:10.1017/pan.2016.12>.
Implementation of the MaxRank normalization method, which enables standardization of Rank Abundance Distributions (RADs) to a specified number of ranks. Rank abundance distributions are widely used in biology and ecology to describe species abundances, and are mathematically equivalent to complementary cumulative distribution functions (CCDFs) used in physics, linguistics, sociology, and other fields. The method is described in Saeedghalati et al. (2017) <doi:10.1371/journal.pcbi.1005362>.
Jade is a high performance template engine heavily influenced by Haml and implemented with JavaScript for node and browsers.