Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the Robust Scoring Equations estimator to fit linear mixed effects models robustly. Robustness is achieved by modification of the scoring equations combined with the Design Adaptive Scale approach.
Restricted Cubic Splines were performed to explore the shape of association form of "U, inverted U, L" shape and test linearity or non-linearity base on "Cox,Logistic,linear,quasipoisson" regression, and auto output Restricted Cubic Splines figures. rcssci package could automatically draw RCS graphics with Y-axis "OR,HR,RR,beta". The Restricted Cubic Splines method were based on Suli Huang (2022) <doi:10.1016/j.ecoenv.2022.113183>,Amit Kaura (2019) <doi:10.1136/bmj.l6055>, and Harrell Jr (2015, ISBN:978-3-319-19424-0 (Print) 978-3-319-19425-7 (Online)).
Plots the Receiver Operating Characteristics Surface for high-throughput class-skewed data, calculates the Volume under the Surface (VUS) and the FDR-Controlled Area Under the Curve (FCAUC), and conducts tests to compare two ROC surfaces. Computes eROC curve and the corresponding AUC for imperfect reference standard.
Converts data to STL (stereolithography) files that can be used to feed a 3-dimensional printer. The 3-dimensional output from a function can be materialized into a solid surface in a plastic material, therefore allowing more detailed examination. There are many possible uses for this new tool, such as to examine mathematical expressions with very irregular shapes, to aid teaching people with impaired vision, to create raised relief maps from digital elevation maps (DEMs), to bridge the gap between mathematical tools and rapid prototyping, and many more. Ian Walker created the function r2stl() and Jose Gama assembled the package.
Summarize model output using a robust effect size index. The index is introduced in Vandekar, Tao, & Blume (2020, <doi:10.1007/s11336-020-09698-2>). Software paper available at <doi:10.18637/jss.v112.i03>.
When assigned "R for Data Science" (Wickham, Ã etinkaya-Rundel, and Grolemund (2023, ISBN: 1492097402)), students should read the book and type in all the associated R commands themselves. Sadly, that never happens. These tutorials allow students to demonstrate (and their instructors to be sure) that all work has been completed. See Kane (2023) <https://ppbds.github.io/tutorial.helpers/articles/instructions.html> from the tutorial.helpers package for a background discussion.
R functions for generating and/or displaying random Chuck Norris facts. Based on data from the Internet Chuck Norris database ('ICNDb').
Implemented fast and memory-efficient Notch-filter, Welch-periodogram, discrete wavelet spectrogram for minutes of high-resolution signals, fast 3D convolution, image registration, 3D mesh manipulation; providing fundamental toolbox for intracranial Electroencephalography (iEEG) pipelines. Documentation and examples about RAVE project are provided at <https://rave.wiki>, and the paper by John F. Magnotti, Zhengjia Wang, Michael S. Beauchamp (2020) <doi:10.1016/j.neuroimage.2020.117341>; see citation("ravetools") for details.
This package provides the hybrid Bayesian method Geometric Density Estimation. On the one hand, it scales the dimension of our data, on the other it performs inference. The method is fully described in the paper "Scalable Geometric Density Estimation" by Y. Wang, A. Canale, D. Dunson (2016) <http://proceedings.mlr.press/v51/wang16e.pdf>.
Visualize networks using the javascript library roughjs'. This allows to draw sketchy, hand-drawn-like networks.
This package contains tools for reading and writing data from or to files in the formats: akterm, dmna, Scintec Format-1, and Campbell Scientific TOA5.
An implementation of calculating the R-squared measure as a total mediation effect size measure and its confidence interval for moderate- or high-dimensional mediator models. It gives an option to filter out non-mediators using variable selection methods. The original R package is directly related to the paper Yang et al (2021) "Estimation of mediation effect for high-dimensional omics mediators with application to the Framingham Heart Study" <doi:10.1101/774877>. The new version contains a choice of using cross-fitting, which is computationally faster. The details of the cross-fitting method are available in the paper Xu et al (2023) "Speeding up interval estimation for R2-based mediation effect of high-dimensional mediators via cross-fitting" <doi:10.1101/2023.02.06.527391>.
Creation, estimation, and prediction of random weight neural networks (RWNN), Schmidt et al. (1992) <doi:10.1109/ICPR.1992.201708>, including popular variants like extreme learning machines, Huang et al. (2006) <doi:10.1016/j.neucom.2005.12.126>, sparse RWNN, Zhang et al. (2019) <doi:10.1016/j.neunet.2019.01.007>, and deep RWNN, Henrà quez et al. (2018) <doi:10.1109/IJCNN.2018.8489703>. It further allows for the creation of ensemble RWNNs like bagging RWNN, Sui et al. (2021) <doi:10.1109/ECCE47101.2021.9595113>, boosting RWNN, stacking RWNN, and ensemble deep RWNN, Shi et al. (2021) <doi:10.1016/j.patcog.2021.107978>.
Computes confidence intervals for binomial or Poisson rates and their differences or ratios. Including the rate (or risk) difference ('RD') or rate ratio (or relative risk, RR') for binomial proportions or Poisson rates, and odds ratio ('OR', binomial only). Also confidence intervals for RD, RR or OR for paired binomial data, and estimation of a proportion from clustered binomial data. Includes skewness-corrected asymptotic score ('SCAS') methods, which have been developed in Laud (2017) <doi:10.1002/pst.1813> from Miettinen and Nurminen (1985) <doi:10.1002/sim.4780040211> and Gart and Nam (1988) <doi:10.2307/2531848>, and in Laud (2025, under review) for paired proportions. The same score produces hypothesis tests that are improved versions of the non-inferiority test for binomial RD and RR by Farrington and Manning (1990) <doi:10.1002/sim.4780091208>, or a generalisation of the McNemar test for paired data. The package also includes MOVER methods (Method Of Variance Estimates Recovery) for all contrasts, derived from the Newcombe method but with options to use equal-tailed intervals in place of the Wilson score method, and generalised for Bayesian applications incorporating prior information. So-called exact methods for strictly conservative coverage are approximated using continuity adjustments, and the amount of adjustment can be selected to avoid over-conservative coverage. Also includes methods for stratified calculations (e.g. meta-analysis), either with fixed effect assumption (matching the CMH test) or incorporating stratum heterogeneity.
This package provides tools for manipulating, exploring, and visualising multiple-response data, including scored or ranked responses. Conversions to and from factors, lists, strings, matrices; reordering, lumping, flattening; set operations; tables; frequency and co-occurrence plots.
This package implements the Simulating Optimal FUNctioning framework for site-scale simulations of ecosystem processes, including model calibration. It contains Fortran 90 modules for the P-model (Stocker et al. (2020) <doi:10.5194/gmd-13-1545-2020>), SPLASH (Davis et al. (2017) <doi:10.5194/gmd-10-689-2017>) and BiomeE (Weng et al. (2015) <doi:10.5194/bg-12-2655-2015>).
Interface to the ChEA3 transcription factor enrichment API. ChEA3 integrates evidence from ChIP-seq, co-expression, and literature resources to prioritize transcription factors regulating a given set of genes. This package provides convenient R functions to query the API, retrieve ranked results across collections (including integrated scores), and standardize output for downstream analysis in R/Bioconductor workflows. See <https://maayanlab.cloud/chea3/> or Keenan (2019) <doi:10.1093/nar/gkz446> for further details.
R parallel implementation of Local Outlier Factor(LOF) which uses multiple CPUs to significantly speed up the LOF computation for large datasets. (Note: The overall performance depends on the computers especially the number of the cores).It also supports multiple k values to be calculated in parallel, as well as various distance measures in addition to the default Euclidean distance.
Indices for assessing riverscape fragmentation, including the Dendritic Connectivity Index, the Population Connectivity Index, the River Fragmentation Index, the Probability of Connectivity, and the Integral Index of connectivity. For a review, see Jumani et al. (2020) <doi:10.1088/1748-9326/abcb37> and Baldan et al. (2022) <doi:10.1016/j.envsoft.2022.105470> Functions to calculate temporal indices improvement when fragmentation due to barriers is reduced are also included.
Facilitates efficient polygon search using kd trees. Coordinate level spatial data can be aggregated to higher geographical identities like census blocks, ZIP codes or police district boundaries. This process requires mapping each point in the given data set to a particular identity of the desired geographical hierarchy. Unless efficient data structures are used, this can be a daunting task. The operation point.in.polygon() from the package sp is computationally expensive. Here, we exploit kd-trees as efficient nearest neighbor search algorithm to dramatically reduce the effective number of polygons being searched.
This package provides a programmatic client for the eBird database (<https://ebird.org/home>), including functions for searching for bird observations by geographic location (latitude, longitude), eBird hotspots, location identifiers, by notable sightings, by region, and by taxonomic name.
This package provides functions to retrieve data and metadata from providers that disseminate data by means of SDMX web services. SDMX (Statistical Data and Metadata eXchange) is a standard that has been developed with the aim of simplifying the exchange of statistical information. More about the SDMX standard and the SDMX Web Services can be found at: <https://sdmx.org>.
Fit Class Cover Catch Digraph Classification models that can be used in machine learning. Pure and proper and random walk approaches are available. Methods are explained in Priebe et al. (2001) <doi:10.1016/S0167-7152(01)00129-8>, Priebe et al. (2003) <doi:10.1007/s00357-003-0003-7>, and Manukyan and Ceyhan (2016) <doi:10.48550/arXiv.1904.04564>.
This package provides functions for linking and deduplicating data sets. Methods based on a stochastic approach are implemented as well as classification algorithms from the machine learning domain. For details, see our paper "The RecordLinkage Package: Detecting Errors in Data" Sariyar M / Borg A (2010) <doi:10.32614/RJ-2010-017>.