Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Developed to assist researchers with planning analysis, prior to obtaining data from Trusted Research Environments (TREs) also known as safe havens. With functionality to export and import marginal distributions as well as synthesise data, both with and without correlations from these marginal distributions. Using a multivariate cumulative distribution (COPULA). Additionally the International Stroke Trial (IST) is included as an example dataset under ODC-By licence Sandercock et al. (2011) <doi:10.7488/ds/104>, Sandercock et al. (2011) <doi:10.1186/1745-6215-12-101>.
This package provides a programmatic interface to the Web Service methods provided by ITALIC (<https://italic.units.it>). ITALIC is a database of lichen data in Italy and bordering European countries. ritalic includes functions for retrieving information about lichen scientific names, geographic distribution, ecological data, morpho-functional traits and identification keys. More information about the data is available at <https://italic.units.it/?procedure=base&t=59&c=60>. The API documentation is available at <https://italic.units.it/?procedure=api>.
Computes the influence functions time series of the returns for the risk and performance measures as mentioned in Chen and Martin (2018) <https://www.ssrn.com/abstract=3085672>, as well as in Zhang et al. (2019) <https://www.ssrn.com/abstract=3415903>. Also evaluates estimators influence functions at a set of parameter values and plots them to display the shapes of the influence functions.
An interface to the software package MARK that constructs input files for MARK and extracts the output. MARK was developed by Gary White and is freely available at <http://www.phidot.org/software/mark/downloads/> but is not open source.
This package provides bioaccumulation factors from a toxicokinetic model fitted to accumulation-depuration data. It is designed to fulfil the requirements of regulators when examining applications for market authorization of active substances.
This package provides functions to implement the parametric and non-parametric bootstrap confidence interval methods described in Morrison and Simon (2017) <arXiv:1702.06986>.
Pointwise generation and display of attractors (prefractals) of the random iterated function system (RIFS) for various combinations of probabilistic and geometric parameters of some fixed point sets (protofractals), described by Bukhovets A.G. (2012) <doi:10.1134/S0005117912020154>.
This package provides functions to load and manage data from Apple Ads accounts using the Apple Ads Campaign Management API <https://developer.apple.com/documentation/apple_ads>.
It is devoted to the IVIVC linear level A with numerical deconvolution method. The latter is working for inequal and incompatible timepoints between impulse and response curves. A numerical convolution method is also available. Application domains include pharamaceutical industry QA/QC and R&D together with academic research.
Extend Rasch and Item Response Theory (IRT) analyses by providing tools for post-processing the output from five major IRT packages (i.e., eRm', psychotools', ltm', mirt', and TAM'). The current version provides the plotPIccc() function, which extracts from the return object of the originating package all information required to draw an extended Person-Item-Map (PIccc), showing any combination of * category characteristic curves (CCCs), * threshold characteristic curves (TCCs), * item characteristic curves (ICCs), * category information functions (CIFs), * item information functions (IIFs), * test information function (TIF), and the * standard error curve (S.E.). for uni- and multidimensional models (as far as supported by each package). It allows for selecting dimensions, items, and categories to plot and offers numerous options to adapt the output. The return object contains all calculated values for further processing.
Allows you to interact with the API of the "Todoist" platform. Todoist <https://todoist.com/> provides an online task manager service for teams.
This package provides a model agnostic tool for white-box model trained on features extracted from a black-box model. For more information see: Gosiewska et al. (2020) <doi:10.1016/j.dss.2021.113556>.
Provide a simple interface to Bloomberg's OpenFIGI API. Please see <https://openfigi.com> for API details and registration. You may be eligible to have an API key to accelerate your loading process.
This RSKC package contains a function RSKC which runs the robust sparse K-means clustering algorithm.
The Linear Programming via Regularized Least Squares (LPPinv) is a two-stage estimation method that reformulates linear programs as structured least-squares problems. Based on the Convex Least Squares Programming (CLSP) framework, LPPinv solves linear inequality, equality, and bound constraints by (1) constructing a canonical constraint system and computing a pseudoinverse projection, followed by (2) a convex-programming correction stage to refine the solution under additional regularization (e.g., Lasso, Ridge, or Elastic Net). LPPinv is intended for underdetermined and ill-posed linear problems, for which standard solvers fail.
Predicting regulatory DNA elements based on epigenomic signatures. This package is more of a set of building blocks than a direct solution. REPTILE regulatory prediction pipeline is built on this R package. See <https://github.com/yupenghe/REPTILE> for more information.
This package provides an interface to many endpoints of Mixpanel's Data Export, Engage and JQL API. The R functions allow for event and profile data export as well as for segmentation, retention, funnel and addiction analysis. Results are always parsed into convenient R objects. Furthermore it is possible to load and update profiles.
Uses Elsevier Scopus API <https://dev.elsevier.com/sc_apis.html> to download information about authors and their citations.
Read the data from Origin(R) project files ('*.opj') <https://www.originlab.com/doc/User-Guide/Origin-File-Types>. No write support is planned.
This package provides a toolkit for analyzing classifier performance by using receiver operating characteristic (ROC) curves. Performance may be assessed on a single classifier or multiple ones simultaneously, making it suitable for comparisons. In addition, different metrics allow the evaluation of local performance when working within restricted ranges of sensitivity and specificity. For details on the different implementations, see McClish D. K. (1989) <doi:10.1177/0272989X8900900307>, Vivo J.-M., Franco M. and Vicari D. (2018) <doi:10.1007/S11634-017-0295-9>, Jiang Y., et al (1996) <doi:10.1148/radiology.201.3.8939225>, Franco M. and Vivo J.-M. (2021) <doi:10.3390/math9212826> and Carrington, André M., et al (2020) <doi: 10.1186/s12911-019-1014-6>.
This package provides tools for grading the coding style and documentation of R scripts. This is the R component of Roger the Omni Grader, an automated grading system for computer programming projects based on Unix shell scripts; see <https://gitlab.com/roger-project>. The package also provides an R interface to the shell scripts. Inspired by the lintr package.
Enhances the R Optimization Infrastructure ('ROI') package with the SCS solver for solving convex cone problems.
This package provides a toolkit for the analysis of paths from spatial tracking experiments and calculation of goal-finding strategies. This package is centered on an approach using machine learning for path classification.
Calculates risk differences (or prevalence differences for cross-sectional data) using generalized linear models with automatic link function selection. Provides robust model fitting with fallback methods, support for stratification and adjustment variables, inverse probability of treatment weighting (IPTW) for causal inference, and publication-ready output formatting. Handles model convergence issues gracefully and provides confidence intervals using multiple approaches. Methods are based on approaches described in Mark W. Donoghoe and Ian C. Marschner (2018) "logbin: An R Package for Relative Risk Regression Using the Log-Binomial Model" <doi:10.18637/jss.v086.i09> for robust GLM fitting, Peter C. Austin (2011) "An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies" <doi:10.1080/00273171.2011.568786> for IPTW methods, and standard epidemiological methods for risk difference estimation as described in Kenneth J. Rothman, Sander Greenland and Timothy L. Lash (2008, ISBN:9780781755641) "Modern Epidemiology".