Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generates tile maps for the East Caucasian language family, inspired by the Typological Atlas of the Languages of Daghestan (TALD, <https://lingconlab.ru/tald/>). It leverages ggplot2 to create visually informative maps, displaying rectangles for each language and allowing for color-coding based on linguistic features. The package includes a built-in dataset of 56 languages and the template for their distribution and provides flexibility to customize the tile map's appearance. The default template can be modified via the ability to hide or rename languages. It's designed to be used with external data tables containing language information and features, offering a tool for visualizing the geographic distribution and linguistic characteristics of East Caucasian languages.
Facilitates the use of machine learning algorithms in classification and regression (including time series forecasting) tasks by presenting a short and coherent set of functions. Versions: 1.5.0 improved mparheuristic function (new hyperparameter heuristics); 1.4.9 / 1.4.8 improved help, several warning and error code fixes (more stable version, all examples run correctly); 1.4.7 - improved Importance function and examples, minor error fixes; 1.4.6 / 1.4.5 / 1.4.4 new automated machine learning (AutoML) and ensembles, via improved fit(), mining() and mparheuristic() functions, and new categorical preprocessing, via improved delevels() function; 1.4.3 new metrics (e.g., macro precision, explained variance), new "lssvm" model and improved mparheuristic() function; 1.4.2 new "NMAE" metric, "xgboost" and "cv.glmnet" models (16 classification and 18 regression models); 1.4.1 new tutorial and more robust version; 1.4 - new classification and regression models, with a total of 14 classification and 15 regression methods, including: Decision Trees, Neural Networks, Support Vector Machines, Random Forests, Bagging and Boosting; 1.3 and 1.3.1 - new classification and regression metrics; 1.2 - new input importance methods via improved Importance() function; 1.0 - first version.
Perform the complete processing of a set of proton nuclear magnetic resonance spectra from the free induction decay (raw data) and based on a processing sequence (macro-command file). An additional file specifies all the spectra to be considered by associating their sample code as well as the levels of experimental factors to which they belong. More detail can be found in Jacob et al. (2017) <doi:10.1007/s11306-017-1178-y>.
An R interface to Weka (Version 3.9.3). Weka is a collection of machine learning algorithms for data mining tasks written in Java, containing tools for data pre-processing, classification, regression, clustering, association rules, and visualization. Package RWeka contains the interface code, the Weka jar is in a separate package RWekajars'. For more information on Weka see <https://www.cs.waikato.ac.nz/ml/weka/>.
Computation of one-, two- and three-dimensional pseudo-observations based on recurrent events and terminal events. Generalised linear models are fitted using generalised estimating equations. Technical details on the bivariate procedure can be found in "Bivariate pseudo-observations for recurrent event analysis with terminal events" (Furberg et al., 2021) <doi:10.1007/s10985-021-09533-5>.
The functions in this package compute robust estimators by minimizing a kernel-based distance known as MMD (Maximum Mean Discrepancy) between the sample and a statistical model. Recent works proved that these estimators enjoy a universal consistency property, and are extremely robust to outliers. Various optimization algorithms are implemented: stochastic gradient is available for most models, but the package also allows gradient descent in a few models for which an exact formula is available for the gradient. In terms of distribution fit, a large number of continuous and discrete distributions are available: Gaussian, exponential, uniform, gamma, Poisson, geometric, etc. In terms of regression, the models available are: linear, logistic, gamma, beta and Poisson. Alquier, P. and Gerber, M. (2024) <doi:10.1093/biomet/asad031> Cherief-Abdellatif, B.-E. and Alquier, P. (2022) <doi:10.3150/21-BEJ1338>.
Model based simulation of dynamic networks under tie-oriented (Butts, C., 2008, <doi:10.1111/j.1467-9531.2008.00203.x>) and actor-oriented (Stadtfeld, C., & Block, P., 2017, <doi:10.15195/v4.a14>) relational event models. Supports simulation from a variety of relational event model extensions, including temporal variability in effects, heterogeneity through dyadic latent class relational event models (DLC-REM), random effects, blockmodels, and memory decay in relational event models (Lakdawala, R., 2024 <doi:10.48550/arXiv.2403.19329>). The development of this package was supported by a Vidi Grant (452-17-006) awarded by the Netherlands Organization for Scientific Research (NWO) Grant and an ERC Starting Grant (758791).
This package provides a comprehensive suite of utilities for univariate continuous probability distributions and reliability models. Includes functions to compute the probability density, cumulative distribution, quantile, reliability, and hazard functions, along with random variate generation. Also offers diagnostic and model assessment tools such as Quantile-Quantile (Q-Q) and Probability-Probability (P-P) plots, the Kolmogorov-Smirnov goodness-of-fit test, and model selection criteria including the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Currently implements the following distributions: Burr X, Chen, Exponential Extension, Exponentiated Logistic, Exponentiated Weibull, Exponential Power, Flexible Weibull, Generalized Exponential, Gompertz, Generalized Power Weibull, Gumbel, Inverse Generalized Exponential, Linear Failure Rate, Log-Gamma, Logistic-Exponential, Logistic-Rayleigh, Log-log, Marshall-Olkin Extended Exponential, Marshall-Olkin Extended Weibull, and Weibull Extension distributions. Serves as a valuable resource for teaching and research in probability theory, reliability analysis, and applied statistical modeling.
This package provides various statistical methods for designing and analyzing two-stage randomized controlled trials using the methods developed by Imai, Jiang, and Malani (2021) <doi:10.1080/01621459.2020.1775612> and (2022+) <doi:10.48550/arXiv.2011.07677>. The package enables the estimation of direct and spillover effects, conduct hypotheses tests, and conduct sample size calculation for two-stage randomized controlled trials.
The renewal Hawkes (RHawkes) process (Wheatley, Filimonov, and Sornette, 2016 <doi:10.1016/j.csda.2015.08.007>) is an extension to the classical Hawkes self-exciting point process widely used in the modelling of clustered event sequence data. This package provides functions to simulate the RHawkes process with a given immigrant hazard rate function and offspring birth time density function, to compute the exact likelihood of a RHawkes process using the recursive algorithm proposed by Chen and Stindl (2018) <doi:10.1080/10618600.2017.1341324>, to compute the Rosenblatt residuals for goodness-of-fit assessment, and to predict future event times based on observed event times up to a given time. A function implementing the linear time RHawkes process likelihood approximation algorithm proposed in Stindl and Chen (2021) <doi:10.1007/s11222-021-10002-0> is also included.
Wraps tiny_obj_loader C++ library for reading the Wavefront OBJ 3D file format including both mesh objects and materials files. The resultant R objects are either structured to match the tiny_obj_loader internal data representation or in a form directly compatible with the rgl package.
The metrics() function calculates measures of scholarly impact. These include conventional measures, such as the number of publications and the total citations to all publications, as well as modern and robust metrics based on the vector of citations associated with each publication, such as the h index and many of its variants or rivals. These methods are described in Ruscio et al. (2012) <DOI: 10.1080/15366367.2012.711147>.
The Reproducible Open Coding Kit ('ROCK', and this package, rock') was developed to facilitate reproducible and open coding, specifically geared towards qualitative research methods. It was developed to be both human- and machine-readable, in the spirit of MarkDown and YAML'. The idea is that this makes it relatively easy to write other functions and packages to process ROCK files. The rock package contains functions for basic coding and analysis, such as collecting and showing coded fragments and prettifying sources, as well as a number of advanced analyses such as the Qualitative Network Approach and Qualitative/Unified Exploration of State Transitions. The ROCK and this rock package are described in the ROCK book (ZörgŠ& Peters, 2022; <https://rockbook.org>), in ZörgŠ& Peters (2024) <doi:10.1080/21642850.2022.2119144> and Peters, ZörgŠand van der Maas (2022) <doi:10.31234/osf.io/cvf52>, and more information and tutorials are available at <https://rock.science>.
This package implements two-sample tests for paired data with missing values (Fong, Huang, Lemos and McElrath 2018, Biostatics, <doi:10.1093/biostatistics/kxx039>) and modified Wilcoxon-Mann-Whitney two sample location test, also known as the Fligner-Policello test.
Application of reinsurance treaties to claims portfolios. The package creates a class Claims whose objective is to store claims and premiums, on which different treaties can be applied. A statistical analysis can then be applied to measure the impact of reinsurance, producing a table or graphical output. This package can be used for estimating the impact of reinsurance on several portfolios or for pricing treaties through statistical analysis. Documentation for the implemented methods can be found in "Reinsurance: Actuarial and Statistical Aspects" by Hansjöerg Albrecher, Jan Beirlant, Jozef L. Teugels (2017, ISBN: 978-0-470-77268-3) and "REINSURANCE: A Basic Guide to Facultative and Treaty Reinsurance" by Munich Re (2010) <https://www.munichre.com/site/mram/get/documents_E96160999/mram/assetpool.mr_america/PDFs/3_Publications/reinsurance_basic_guide.pdf>.
Data exploration and prediction with focus on high dimensional data and chemometrics. The package was initially designed about partial least squares regression and discrimination models and variants, in particular locally weighted PLS models (LWPLS). Then, it has been expanded to many other methods for analyzing high dimensional data. The name rchemo comes from the fact that the package is orientated to chemometrics, but most of the provided methods are fully generic to other domains. Functions such as transform(), predict(), coef() and summary() are available. Tuning the predictive models is facilitated by generic functions gridscore() (validation dataset) and gridcv() (cross-validation). Faster versions are also available for models based on latent variables (LVs) (gridscorelv() and gridcvlv()) and ridge regularization (gridscorelb() and gridcvlb()).
This package provides an easy way to compute the Theil Sehn Regression method and also the Siegel Regression Method which are both robust methods base on the median of slopes between all pairs of data. In contrast with the least squared linear regression, these methods are not sensitive to outliers. Theil, H. (1992) <doi:10.1007/978-94-011-2546-8_20>, Sen, P. K. (1968) <doi:10.1080/01621459.1968.10480934>.
This package provides a collection of methods for quantifying representational similarity between learned features or multivariate data. The package offers an efficient C++ backend, designed for applications in machine learning, computational neuroscience, and multivariate statistics. See Klabunde et al. (2025) <doi:10.1145/3728458> for a comprehensive overview of the topic.
Simulates individual-based models of agricultural pest management and the evolution of pesticide resistance. Management occurs on a spatially explicit landscape that is divided into an arbitrary number of farms that can grow one of up to 10 crops and apply one of up to 10 pesticides. Pest genomes are modelled in a way that allows for any number of pest traits with an arbitrary covariance structure that is constructed using an evolutionary algorithm in the mine_gmatrix() function. Simulations are then run using the run_farm_sim() function. This package thereby allows for highly mechanistic social-ecological models of the evolution of pesticide resistance under different types of crop rotation and pesticide application regimes.
Set of functions for Regression Discontinuity Design ('RDD'), for data visualisation, estimation and testing.
Algorithms for solving a self-calibrated l1-regularized quadratic programming problem without parameter tuning. The algorithm, called DECODE, can handle high-dimensional data without cross-validation. It is found useful in high dimensional portfolio selection (see Pun (2018) <https://ssrn.com/abstract=3179569>) and large precision matrix estimation and sparse linear discriminant analysis (see Pun and Hadimaja (2019) <https://ssrn.com/abstract=3422590>).
Minirhizotrons are widely used to observe and explore roots and their growth. This package provides the means to stitch images and divide them into depth layers. Please note that this R package was developed alongside the following manuscript: Stitching root scans and extracting depth layer information -- a workflow and practical examples, S. Kersting, L. Knüver, and M. Fischer. The manuscript is currently in preparation and should be citet as soon as it is available. This project was supported by the project ArtIGROW, which is a part of the WIR!-Alliance ArtIFARM â Artificial Intelligence in Farming funded by the German Federal Ministry of Research, Technology and Space (No. 03WIR4805).
Three robust marginal integration procedures for additive models based on local polynomial kernel smoothers. As a preliminary estimator of the multivariate function for the marginal integration procedure, a first approach uses local constant M-estimators, a second one uses local polynomials of order 1 over all the components of covariates, and the third one uses M-estimators based on local polynomials but only in the direction of interest. For this last approach, estimators of the derivatives of the additive functions can be obtained. All three procedures can compute predictions for points outside the training set if desired. See Boente and Martinez (2017) <doi:10.1007/s11749-016-0508-0> for details.
This package provides a tool for undergraduate and graduate courses in open-channel hydraulics. Provides functions for computing normal and critical depths, steady-state water surface profiles (e.g. backwater curves) and unsteady flow computations (e.g. flood wave routing) as described in Koohafkan MC, Younis BA (2015). "Open-channel computation with R." The R Journal, 7(2), 249â 262. <doi: 10.32614/RJ-2015-034>.