Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Read CODAR's SeaSonde High-Frequency Radar spectra files, compute radial metrics, and generate plots for spectra and antenna pattern data. Implementation is based in technical manuals, publications and patents, please refer to the following documents for more information: Barrick and Lipa (1999) <https://codar.com/images/about/patents/05990834.PDF>; CODAR Ocean Sensors (2002) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/Informative/FirstOrder_Settings.pdf>; Lipa et al. (2006) <doi:10.1109/joe.2006.886104>; Paolo et al. (2007) <doi:10.1109/oceans.2007.4449265>; CODAR Ocean Sensors (2009a) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_AntennaPattern.pdf>; CODAR Ocean Sensors (2009b) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_CrossSpectraReduced.pdf>; CODAR Ocean Sensors (2016a) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/File_Cross_Spectra_V6.pdf>; CODAR Ocean Sensors (2016b) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/FIle_Reduced_Spectra.pdf>; CODAR Ocean Sensors (2016c) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/Application_Guides/Guide_SpectraPlotterMap.pdf>; Bushnell and Worthington (2022) <doi:10.25923/4c5x-g538>.
An implementation of local and global statistical complexity measures (aka Information Theory Quantifiers, ITQ) for time series analysis based on ordinal statistics (Bandt and Pompe (2002) <DOI:10.1103/PhysRevLett.88.174102>). Several distance measures that operate on ordinal pattern distributions, auxiliary functions for ordinal pattern analysis, and generating functions for stochastic and deterministic-chaotic processes for ITQ testing are provided.
Manipulating input and output files of the STICS crop model. Files are either JavaSTICS XML files or text files used by the model fortran executable. Most basic functionalities are reading or writing parameter names and values in both XML or text input files, and getting data from output files. Advanced functionalities include XML files generation from XML templates and/or spreadsheets, or text files generation from XML files by using xslt transformation.
Unofficial client for Sentry <https://sentry.io>, a self-hosted or cloud-based error-monitoring service. It will inform about errors in real-time, and includes integration with the Plumber package.
Data sets and code blocks for the book Statistical Analysis of Network Data with R, 2nd Edition'.
Detects spatial and temporal groups in GPS relocations (Robitaille et al. (2019) <doi:10.1111/2041-210X.13215>). It can be used to convert GPS relocations to gambit-of-the-group format to build proximity-based social networks In addition, the randomizations function provides data-stream randomization methods suitable for GPS data.
This package provides functions for the Skellam distribution, including: density (pmf), cdf, quantiles and regression.
This package provides utilities for cleaning survey data, computing weights, and performing descriptive statistical analysis. Methods follow Lohr (2019, ISBN:978-0367272454) "Sampling: Design and Analysis" and Lumley (2010) <doi:10.1002/9780470580066>.
This package provides functions in this package provide solution to classical problem in survey methodology - an optimum sample allocation in stratified sampling. In this context, the optimum allocation is in the classical Tschuprow-Neyman's sense and it satisfies additional lower or upper bounds restrictions imposed on sample sizes in strata. There are few different algorithms available to use, and one them is based on popular sample allocation method that applies Neyman allocation to recursively reduced set of strata. This package also provides the function that computes a solution to the minimum cost allocation problem, which is a minor modification of the classical optimum sample allocation. This problem lies in the determination of a vector of strata sample sizes that minimizes total cost of the survey, under assumed fixed level of the stratified estimator's variance. As in the case of the classical optimum allocation, the problem of minimum cost allocation can be complemented by imposing upper-bounds constraints on sample sizes in strata.
The SAWNUTI algorithm performs sequence comparison for finite sequences of discrete events with non-uniform time intervals. Further description of the algorithm can be found in the paper: A. Murph, A. Flynt, B. R. King (2021). Comparing finite sequences of discrete events with non-uniform time intervals, Sequential Analysis, 40(3), 291-313. <doi:10.1080/07474946.2021.1940491>.
An implementation of the stratification index proposed by Zhou (2012) <DOI:10.1177/0081175012452207>. The package provides two functions, srank, which returns stratum-specific information, including population share and average percentile rank; and strat, which returns the stratification index and its approximate standard error. When a grouping factor is specified, strat also provides a detailed decomposition of the overall stratification into between-group and within-group components.
This package contains a suite of functions for survival analysis in health economics. These can be used to run survival models under a frequentist (based on maximum likelihood) or a Bayesian approach (both based on Integrated Nested Laplace Approximation or Hamiltonian Monte Carlo). To run the Bayesian models, the user needs to install additional modules (packages), i.e. survHEinla and survHEhmc'. These can be installed from <https://giabaio.r-universe.dev/> using install.packages("survHEhmc", repos = c("https://giabaio.r-universe.dev", "https://cloud.r-project.org")) and install.packages("survHEinla", repos = c("https://giabaio.r-universe.dev", "https://cloud.r-project.org")) respectively. survHEinla is based on the package INLA, which is available for download at <https://inla.r-inla-download.org/R/stable/>. The user can specify a set of parametric models using a common notation and select the preferred mode of inference. The results can also be post-processed to produce probabilistic sensitivity analysis and can be used to export the output to an Excel file (e.g. for a Markov model, as often done by modellers and practitioners). <doi:10.18637/jss.v095.i14>.
Regression inference for multiple populations by integrating summary-level data using stacked imputations. Gu, T., Taylor, J.M.G. and Mukherjee, B. (2021) A synthetic data integration framework to leverage external summary-level information from heterogeneous populations <arXiv:2106.06835>.
This package provides utilities for conducting specification curve analyses (Simonsohn, Simmons & Nelson (2020, <doi: 10.1038/s41562-020-0912-z>) or multiverse analyses (Steegen, Tuerlinckx, Gelman & Vanpaemel, 2016, <doi: 10.1177/1745691616658637>) including functions to setup, run, evaluate, and plot all specifications.
This package provides routines for scoring behavioral questionnaires. Includes scoring procedures for the International Physical Activity Questionnaire (IPAQ) <http://www.ipaq.ki.se>. Compares physical functional performance to the age- and gender-specific normal ranges.
This is a graph database in SQLite'. It is inspired by Denis Papathanasiou's Python simple-graph project on GitHub'.
Bio-Layer Interferometry (BLI) is a technology to determine the binding kinetics between biomolecules. BLI signals are small and noisy when small molecules are investigated as ligands (analytes). We develop this package to process and analyze the BLI data acquired on Octet Red96 from Fortebio more accurately. Sun Q., Li X., et al (2020) <doi:10.1038/s41467-019-14238-3>. In this new version, we organize the BLI experiment data and analysis methods into a S4 class with self-explaining structure.
This package provides tools to simulate and analyze survival data with interval-, left-, right-, and uncensored observations under common parametric distributions, including "Weibull", "Exponential", "Log-Normal", "Log-Logistic", "Gamma", "Gompertz", "Normal", "Logistic", and "EMV". The package supports both direct maximum likelihood estimation and imputation-based methods, making it suitable for methodological research, simulation benchmarking, and teaching. A web-based companion app is also available for demonstration purposes.
Sparse-group boosting to be used in conjunction with the mboost for modeling grouped data. Applicable to all sparse-group lasso type problems where within-group and between-group sparsity is desired. Interprets and visualizes individual variables and groups.
An R API providing access to a relational database with macroeconomic time series data for South Africa, obtained from the South African Reserve Bank (SARB) and Statistics South Africa (STATSSA), and updated on a weekly basis via the EconData <https://www.econdata.co.za/> platform and automated scraping of the SARB and STATSSA websites. The database is maintained at the Department of Economics at Stellenbosch University.
Extends the functionality of R serialization by augmenting the built-in reference hook system. This enhanced implementation allows optimal, one-pass integrated serialization that combines R serialization with third-party serialization methods. Facilitates the serialization of even complex R objects, which contain non-system reference objects, such as those accessed via external pointers, for use in parallel and distributed computing.
Assessment of the distributions of baseline continuous and categorical variables in randomised trials. This method is based on the Carlisle-Stouffer method with Monte Carlo simulations. It calculates p-values for each trial baseline variable, as well as combined p-values for each trial - these p-values measure how compatible are distributions of trials baseline variables with random sampling. This package also allows for graphically plotting the cumulative frequencies of computed p-values. Please note that code was partly adapted from Carlisle JB, Loadsman JA. (2017) <doi:10.1111/anae.13650>.
This package provides the filtering algorithms for the state space models on the Stiefel manifold as well as the corresponding sampling algorithms for uniform, vector Langevin-Bingham and matrix Langevin-Bingham distributions on the Stiefel manifold.
Utility functions for scale-dependent and alternative hyperpriors. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. Hyperpriors for all effects can be elicitated within the package. Including complex tensor product interaction terms and variable selection priors. The basic model is explained in in Klein and Kneib (2016) <doi:10.1214/15-BA983>.