Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Balancing computational and statistical efficiency, subsampling techniques offer a practical solution for handling large-scale data analysis. Subsampling methods enhance statistical modeling for massive datasets by efficiently drawing representative subsamples from full dataset based on tailored sampling probabilities. These probabilities are optimized for specific goals, such as minimizing the variance of coefficient estimates or reducing prediction error.
Streamlines geographic data transformation, storage and publication, simplifying data preparation and enhancing interoperability across formats and platforms.
This package provides a method to explore the treatment-covariate interactions in survival or generalized linear model (GLM) for continuous, binomial and count data arising from two or more treatment arms of a clinical trial. A permutation distribution approach to inference is implemented, based on permuting the covariate values within each treatment group.
Based on the illness-death model a large number of clinical trials with oncology endpoints progression-free survival (PFS) and overall survival (OS) can be simulated, see Meller, Beyersmann and Rufibach (2019) <doi:10.1002/sim.8295>. The simulation set-up allows for random and event-driven censoring, an arbitrary number of treatment arms, staggered study entry and drop-out. Exponentially, Weibull and piecewise exponentially distributed survival times can be generated. The correlation between PFS and OS can be calculated.
This package provides an implementation of the Sparse ICA method in Wang et al. (2024) <doi:10.1080/01621459.2024.2370593> for estimating sparse independent source components of cortical surface functional MRI data, by addressing a non-smooth, non-convex optimization problem through the relax-and-split framework. This method effectively balances statistical independence and sparsity while maintaining computational efficiency.
This package provides a consistently well behaved method of interpolation based on piecewise rational functions using Stineman's algorithm.
This package provides a facility to generate sliced (orthogonal) Latin hypercube designs with four and five slices. For details about sliced and orthogonal Latin hypercube designs, see Yang, J. F., Lin, C. D., Qian, P. Z., and Lin, D. K. (2013). "Construction of sliced orthogonal Latin hypercube designs". Statistica Sinica, 1117-1130, <doi:10.5705/ss.2012.037>.
Use piping, verbs like group_by and summarize', and other dplyr inspired syntactic style when calculating summary statistics on survey data using functions from the survey package.
Given a list of substance compositions, a list of substances involved in a process, and a list of constraints in addition to mass conservation of elementary constituents, the package contains functions to build the substance composition matrix, to analyze the uniqueness of process stoichiometry, and to calculate stoichiometric coefficients if process stoichiometry is unique. (See Reichert, P. and Schuwirth, N., A generic framework for deriving process stoichiometry in enviromental models, Environmental Modelling and Software 25, 1241-1251, 2010 for more details.).
Easily analyze and visualize the performance of symptom checkers. This package can be used to gain comprehensive insights into the performance of single symptom checkers or the performance of multiple symptom checkers. It can be used to easily compare these symptom checkers across several metrics to gain an understanding of their strengths and weaknesses. The metrics are developed in Kopka et al. (2023) <doi:10.1177/20552076231194929>.
Analyzing soil food webs or any food web measured at equilibrium. The package calculates carbon and nitrogen fluxes and stability properties using methods described by Hunt et al. (1987) <doi:10.1007/BF00260580>, de Ruiter et al. (1995) <doi:10.1126/science.269.5228.1257>, Holtkamp et al. (2011) <doi:10.1016/j.soilbio.2010.10.004>, and Buchkowski and Lindo (2021) <doi:10.1111/1365-2435.13706>. The package can also manipulate the structure of the food web as well as simulate food webs away from equilibrium and run decomposition experiments.
Set of functions that access information about deputies and votings in Polish diet from webpage <http://www.sejm.gov.pl>. The package was developed as a result of an internship in MI2 Group - <http://mi2.mini.pw.edu.pl>, Faculty of Mathematics and Information Science, Warsaw University of Technology.
Generate continuous (normal, non-normal, or mixture distributions), binary, ordinal, and count (regular or zero-inflated, Poisson or Negative Binomial) variables with a specified correlation matrix, or one continuous variable with a mixture distribution. This package can be used to simulate data sets that mimic real-world clinical or genetic data sets (i.e., plasmodes, as in Vaughan et al., 2009 <DOI:10.1016/j.csda.2008.02.032>). The methods extend those found in the SimMultiCorrData R package. Standard normal variables with an imposed intermediate correlation matrix are transformed to generate the desired distributions. Continuous variables are simulated using either Fleishman (1978)'s third order <DOI:10.1007/BF02293811> or Headrick (2002)'s fifth order <DOI:10.1016/S0167-9473(02)00072-5> polynomial transformation method (the power method transformation, PMT). Non-mixture distributions require the user to specify mean, variance, skewness, standardized kurtosis, and standardized fifth and sixth cumulants. Mixture distributions require these inputs for the component distributions plus the mixing probabilities. Simulation occurs at the component level for continuous mixture distributions. The target correlation matrix is specified in terms of correlations with components of continuous mixture variables. These components are transformed into the desired mixture variables using random multinomial variables based on the mixing probabilities. However, the package provides functions to approximate expected correlations with continuous mixture variables given target correlations with the components. Binary and ordinal variables are simulated using a modification of ordsample() in package GenOrd'. Count variables are simulated using the inverse CDF method. There are two simulation pathways which calculate intermediate correlations involving count variables differently. Correlation Method 1 adapts Yahav and Shmueli's 2012 method <DOI:10.1002/asmb.901> and performs best with large count variable means and positive correlations or small means and negative correlations. Correlation Method 2 adapts Barbiero and Ferrari's 2015 modification of the GenOrd package <DOI:10.1002/asmb.2072> and performs best under the opposite scenarios. The optional error loop may be used to improve the accuracy of the final correlation matrix. The package also contains functions to calculate the standardized cumulants of continuous mixture distributions, check parameter inputs, calculate feasible correlation boundaries, and summarize and plot simulated variables.
It involves bibliometric indicators calculation from bibliometric data.It also deals pattern analysis using the text part of bibliometric data.The bibliometric data are obtained from mainly Web of Science and Scopus.
Generates/modifies RNA-seq data for use in simulations. We provide a suite of functions that will add a known amount of signal to a real RNA-seq dataset. The advantage of using this approach over simulating under a theoretical distribution is that common/annoying aspects of the data are more preserved, giving a more realistic evaluation of your method. The main functions are select_counts(), thin_diff(), thin_lib(), thin_gene(), thin_2group(), thin_all(), and effective_cor(). See Gerard (2020) <doi:10.1186/s12859-020-3450-9> for details on the implemented methods.
The implementation of the algorithm for estimation of mutual information and channel capacity from experimental data by classification procedures (logistic regression). Technically, it allows to estimate information-theoretic measures between finite-state input and multivariate, continuous output. Method described in Jetka et al. (2019) <doi:10.1371/journal.pcbi.1007132>.
This package provides functions for self-determination motivation theory (SDT) to compute measures of motivation internalization, motivation simplex structure, and of the original and adjusted self-determination or relative autonomy index. SDT was introduced by Deci and Ryan (1985) <doi:10.1007/978-1-4899-2271-7>. See package?SDT for an overview.
Identifies constant, additive, multiplicative, and user-defined simplivariate components in numeric data matrices using a genetic algorithm. Supports flexible pattern definitions and provides visualization for general biclustering applications across diverse domains. The method builds on simplivariate models as introduced in Hageman et al. (2008) <doi:10.1371/journal.pone.0003259> and is related to biclustering frameworks as reviewed by Madeira and Oliveira (2004) <doi:10.1109/TCBB.2004.2>.
It is a framework to fit semiparametric regression estimators for the total parameter of a finite population when the interest variable is asymmetric distributed. The main references for this package are Sarndal C.E., Swensson B., and Wretman J. (2003,ISBN: 978-0-387-40620-6, "Model Assisted Survey Sampling." Springer-Verlag) Cardozo C.A, Paula G.A. and Vanegas L.H. (2022) "Generalized log-gamma additive partial linear mdoels with P-spline smoothing", Statistical Papers. Cardozo C.A and Alonso-Malaver C.E. (2022). "Semi-parametric model assisted estimation in finite populations." In preparation.
This package provides tools for making, retrieving, displaying and solving sudoku games. This package is an alternative to the earlier sudoku-solver package, sudoku'. The present package uses a slightly different algorithm, has a simpler coding and presents a few more sugar tools, such as plot and print methods. Solved sudoku games are of some interest in Experimental Design as examples of Latin Square designs with additional balance constraints.
This package provides a collection of functions for estimating spatial regimes, aggregations of neighboring spatial units that are homogeneous in functional terms. The term spatial regime, therefore, should not be understood as a synonym for cluster. More precisely, the term cluster does not presuppose any functional relationship between the variables considered, while the term regime is linked to a regressive relationship underlying the spatial process.
Obtain parameters of Svensson's Method, including percentage agreement, systematic change and individual change. Also, the contingency table can be generated. Svensson's Method is a rank-invariant nonparametric method for the analysis of ordered scales which measures the level of change both from systematic and individual aspects. For the details, please refer to Svensson E. Analysis of systematic and random differences between paired ordinal categorical data [dissertation]. Stockholm: Almqvist & Wiksell International; 1993.
This package provides functions for fitting a sparse partial least squares (SPLS) regression and classification (Chun and Keles (2010) <doi:10.1111/j.1467-9868.2009.00723.x>).
This package implements the Scout method for regression, described in "Covariance-regularized regression and classification for high-dimensional problems", by Witten and Tibshirani (2008), Journal of the Royal Statistical Society, Series B 71(3): 615-636.