Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a user-friendly tool for estimating both total and directional connectedness spillovers based on Diebold and Yilmaz (2009, 2012). It also provides the user with rolling estimation for total and net indices. User can find both orthogonalized and generalized versions for each kind of measures. See Diebold and Yilmaz (2009, 2012) find them at <doi:10.1111/j.1468-0297.2008.02208.x> and <doi:10.1016/j.ijforecast.2011.02.006>.
Input/Output, processing and visualization of spectra taken with different spectrometers, including SVC (Spectra Vista), ASD and PSR (Spectral Evolution). Implements an S3 class spectra that other packages can build on. Provides methods to access, plot, manipulate, splice sensor overlap, vector normalize and smooth spectra.
Stochastic Newton Sampler (SNS) is a Metropolis-Hastings-based, Markov Chain Monte Carlo sampler for twice differentiable, log-concave probability density functions (PDFs) where the proposal density function is a multivariate Gaussian resulting from a second-order Taylor-series expansion of log-density around the current point. The mean of the Gaussian proposal is the full Newton-Raphson step from the current point. A Boolean flag allows for switching from SNS to Newton-Raphson optimization (by choosing the mean of proposal function as next point). This can be used during burn-in to get close to the mode of the PDF (which is unique due to concavity). For high-dimensional densities, mixing can be improved via state space partitioning strategy, in which SNS is applied to disjoint subsets of state space, wrapped in a Gibbs cycle. Numerical differentiation is available when analytical expressions for gradient and Hessian are not available. Facilities for validation and numerical differentiation of log-density are provided. Note: Formerly available versions of the MfUSampler can be obtained from the archive <https://cran.r-project.org/src/contrib/Archive/MfUSampler/>.
On discrete data spectral analysis is performed by Fourier and Hilbert transforms as well as with model based analysis called Lomb-Scargle method. Fragmented and irregularly spaced data can be processed in almost all methods. Both, FFT as well as LOMB methods take multivariate data and return standardized PSD. For didactic reasons an analytical approach for deconvolution of noise spectra and sampling function is provided. A user friendly interface helps to interpret the results.
This package provides functions for creating and annotating a composite plot in ggplot2'. Offers background themes and shortcut plotting functions that produce figures that are appropriate for the format of scientific journals. Some methods are described in Min and Zhou (2021) <doi:10.3389/fgene.2021.802894>.
Facilitates basic and equation-based analyses of some important soil properties related to soil chemical environment and nutrient availability to plants. Freundlich H (1907). <doi:10.1515/zpch-1907-5723>. Datta SP, Bhadoria PBS (1999). <doi:10.1002%2F%28SICI%291522-2624%28199903%29162%3A2%3C183%3A%3AAID-JPLN183%3E3.0.CO%3B2-A>."Boron adsorption and desorption in some acid soils of West Bengal, India". Langmuir I (1918). <doi:10.1021/ja02242a004> "The adsorption of gases on plane surfaces of glass, mica, and platinum". Khasawneh FE (1971). <doi:10.2136/sssaj1971.03615995003500030029x> "Solution ion activity and plant growth".
This package provides a series of tools for analyzing Systems Factorial Technology data. This includes functions for plotting and statistically testing capacity coefficient functions and survivor interaction contrast functions. Houpt, Blaha, McIntire, Havig, and Townsend (2013) <doi:10.3758/s13428-013-0377-3> provide a basic introduction to Systems Factorial Technology along with examples using the sft R package.
Uses parametric and nonparametric methods to quantify the proportion of the estimated selection bias (SB) explained by each observed confounder when estimating propensity score weighted treatment effects. Parast, L and Griffin, BA (2020). "Quantifying the Bias due to Observed Individual Confounders in Causal Treatment Effect Estimates". Statistics in Medicine, 39(18): 2447- 2476 <doi: 10.1002/sim.8549>.
Generates a random quotation from a database of quotes on topics in statistics, data visualization and science. Other functions allow searching the quotes database by key term tags, or authors or creating a word cloud. The output is designed to be suitable for use at the console, in Rmarkdown and LaTeX.
This package provides monthly statistics on the number of monthly air passengers at SFO airport such as operating airline, terminal, geo, etc. Data source: San Francisco data portal (DataSF) <https://data.sfgov.org/Transportation/Air-Traffic-Passenger-Statistics/rkru-6vcg>.
Implementation of Sequential BATTing (bootstrapping and aggregating of thresholds from trees) for developing threshold-based multivariate (prognostic/predictive) biomarker signatures. Variable selection is automatically built-in. Final signatures are returned with interaction plots for predictive signatures. Cross-validation performance evaluation and testing dataset results are also output. Detail algorithms are described in Huang et al (2017) <doi:10.1002/sim.7236>.
C++ classes for sparse matrix methods including implementation of sparse LDL decomposition of symmetric matrices and solvers described by Timothy A. Davis (2016) <https://fossies.org/linux/SuiteSparse/LDL/Doc/ldl_userguide.pdf>. Provides a set of C++ classes for basic sparse matrix specification and linear algebra, and a class to implement sparse LDL decomposition and solvers. See <https://github.com/samuel-watson/SparseChol> for details.
The stress addition approach is an alternative to the traditional concentration addition or effect addition models. It allows the modelling of tri-phasic concentration-response relationships either as single toxicant experiments, in combination with an environmental stressor or as mixtures of two toxicants. See Liess et al. (2019) <doi:10.1038/s41598-019-51645-4> and Liess et al. (2020) <doi:10.1186/s12302-020-00394-7>.
Capture screenshots in Shiny applications. Screenshots can either be of the entire viewable page, or a specific section of the page. The captured image is automatically downloaded as a PNG image, or it can also be saved on the server. Powered by the html2canvas JavaScript library.
This package provides methods for sensory discrimination methods; duotrio, tetrad, triangle, 2-AFC, 3-AFC, A-not A, same-different, 2-AC and degree-of-difference. This enables the calculation of d-primes, standard errors of d-primes, sample size and power computations, and comparisons of different d-primes. Methods for profile likelihood confidence intervals and plotting are included. Most methods are described in Brockhoff, P.B. and Christensen, R.H.B. (2010) <doi:10.1016/j.foodqual.2009.04.003>.
Computes the Exposure-At-Default based on the standardized approach of CRR2 (SA-CCR). The simplified version of SA-CCR has been included, as well as the OEM methodology. Multiple trade types of all the five major asset classes are being supported including the Other Exposure and, given the inheritance- based structure of the application, the addition of further trade types is straightforward. The application returns a list of trees per Counterparty and CSA after automatically separating the trades based on the Counterparty, the CSAs, the hedging sets, the netting sets and the risk factors. The basis and volatility transactions are also identified and treated in specific hedging sets whereby the corresponding penalty factors are applied. All the examples appearing on the regulatory papers (both for the margined and the unmargined workflow) have been implemented including the latest CRR2 developments.
The developed package can be used to generate a spatial population for different levels of relationships among the dependent and auxiliary variables along with spatially varying model parameters. A spatial layout is designed as a [0,k-1]x[0,k-1] square region on which observations are collected at (k x k) lattice points with a unit distance between any two neighbouring points along the horizontal and vertical axes. For method details see Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018).<doi:10.1080/10485252.2018.1499907>. The generated spatial population can be utilized in Geographically Weighted Regression model based analysis for studying the spatially varying relationships among the variables. Furthermore, various statistical analysis can be performed on this spatially generated data.
The Subsemble algorithm is a general subset ensemble prediction method, which can be used for small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of observations, fits a specified underlying algorithm on each subset, and uses a unique form of k-fold cross-validation to output a prediction function that combines the subset-specific fits. An oracle result provides a theoretical performance guarantee for Subsemble. The paper, "Subsemble: An ensemble method for combining subset-specific algorithm fits" is authored by Stephanie Sapp, Mark J. van der Laan & John Canny (2014) <doi:10.1080/02664763.2013.864263>.
Implementation of the structural model for variances in order to detect differentially expressed genes from gene expression data.
Semi-parametric estimation problem can be solved by two-step Newton-Raphson iteration. The implicit profiling method<arXiv:2108.07928> is an improved method of two-step NR iteration especially for the implicit-bundled type of the parametric part and non-parametric part. This package provides a function semislv() supporting the above two methods and numeric derivative approximation for unprovided Jacobian matrix.
Simple bootstrap routines.
Simplicially constrained regression models for proportions in both sides. The constraint is always that the betas are non-negative and sum to 1. References: Iverson S.J.., Field C., Bowen W.D. and Blanchard W. (2004) "Quantitative Fatty Acid Signature Analysis: A New Method of Estimating Predator Diets". Ecological Monographs, 74(2): 211-235. <doi:10.1890/02-4105>.
This package performs survival analysis for one-way layout. The package includes the generalized test for survival ANOVA (Tsui and Weerahandi (1989) <doi:10.2307/2289949> and (Weerahandi, 2004; ISBN:978-0471470175)). It also performs pairwise comparisons and graphical approaches. Moreover, it assesses the weibullness of data in each group via test. The package computes mean and confidence interval under Weibull distribution.
This package provides a set of functions to calculate sample size for two-sample difference in means tests. Does adjustments for either nonadherence or variability that comes from using data to estimate parameters.