Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the SISAL algorithm by Tikka and Hollmén. It is a sequential backward selection algorithm which uses a linear model in a cross-validation setting. Starting from the full model, one variable at a time is removed based on the regression coefficients. From this set of models, a parsimonious (sparse) model is found by choosing the model with the smallest number of variables among those models where the validation error is smaller than a threshold. Also implements extensions which explore larger parts of the search space and/or use ridge regression instead of ordinary least squares.
Retrieves the most important data on parliamentary activities of the Swiss Federal Assembly via an open, machine-readable interface (see <https://ws.parlament.ch/odata.svc/>).
Hyvärinen's score matching (Hyvärinen, 2005) <https://jmlr.org/papers/v6/hyvarinen05a.html> is a useful estimation technique when the normalising constant for a probability distribution is difficult to compute. This package implements score matching estimators using automatic differentiation in the CppAD library <https://github.com/coin-or/CppAD> and is designed for quickly implementing score matching estimators for new models. Also available is general robustification (Windham, 1995) <https://www.jstor.org/stable/2346159>. Already in the package are estimators for directional distributions (Mardia, Kent and Laha, 2016) <doi:10.48550/arXiv.1604.08470> and the flexible Polynomially-Tilted Pairwise Interaction model for compositional data. The latter estimators perform well when there are zeros in the compositions (Scealy and Wood, 2023) <doi:10.1080/01621459.2021.2016422>, even many zeros (Scealy, Hingee, Kent, and Wood, 2024) <doi:10.1007/s11222-024-10412-w>. A partial interface to CppAD's ADFun objects is also available.
This package implements a test for distinguishing between true long memory and spurious long memory. Reference: Qu, Z. (2011). "A Test Against Spurious Long Memory." Journal of Business & Economic Statistics, 29(3), 423â 438. <doi:10.1198/jbes.2010.09153>.
Proposes an application for sequence prediction generalizing the similarity within the network of previous sequences.
Shrinkage estimator for polygenic risk prediction models based on summary statistics of genome-wide association studies.
It is often useful to produce short, quasi-unique identifiers (SQUIDs) without the benefit of a central authority to prevent duplication. Although Universally Unique Identifiers (UUIDs) provide for this, these are also unwieldy; for example, the most used UUID, version 4, is 36 characters long. SQUIDs are short (8 characters) at the expense of having more collisions, which can be mitigated by combining them with human-produced suffixes, yielding relatively brief, half human-readable, almost-unique identifiers (see for example the identifiers used for Decentralized Construct Taxonomies; Peters & Crutzen, 2024 <doi:10.15626/MP.2022.3638>). SQUIDs are the number of centiseconds elapsed since the beginning of 1970 converted to a base 30 system. This package contains functions to produce SQUIDs as well as convert them back into dates and times.
Single-Index Quantile Regression is effective in some scenarios. We provides functions that allow users to fit Single-Index Quantile Regression model. It also provides functions to do prediction, estimate standard errors of the single-index coefficients via bootstrap, and visualize the estimated univariate function. Please see W., Y., Y. (2010) <doi:10.1016/j.jmva.2010.02.003> for details.
Implementations self-normalization (SN) based algorithms for change-points estimation in time series data. This comprises nested local-window algorithms for detecting changes in both univariate and multivariate time series developed in Zhao, Jiang and Shao (2022) <doi:10.1111/rssb.12552>.
Computes segregation indices, including the Index of Dissimilarity, as well as the information-theoretic indices developed by Theil (1971) <isbn:978-0471858454>, namely the Mutual Information Index (M) and Theil's Information Index (H). The M, further described by Mora and Ruiz-Castillo (2011) <doi:10.1111/j.1467-9531.2011.01237.x> and Frankel and Volij (2011) <doi:10.1016/j.jet.2010.10.008>, is a measure of segregation that is highly decomposable. The package provides tools to decompose the index by units and groups (local segregation), and by within and between terms. The package also provides a method to decompose differences in segregation as described by Elbers (2021) <doi:10.1177/0049124121986204>. The package includes standard error estimation by bootstrapping, which also corrects for small sample bias. The package also contains functions for visualizing segregation patterns.
Reports markers list, differentially expressed genes, associated pathways, cell-type annotations, does batch correction and other related single cell analyses all wrapped within Seurat'.
Standard RGB spaces included are sRGB, Adobe RGB, ProPhoto RGB, BT.709, and others. User-defined RGB spaces are also possible. There is partial support for ACES Color workflows.
Tool for statistical simulations that have two components. One component generates the data and the other one analyzes the data. The main aims of the package are the reduction of the administrative source code (mainly loops and management code for the results) and a simple applicability of the package that allows the user to quickly learn how to work with it. Parallel computing is also supported. Finally, convenient functions are provided to summarize the simulation results.
We provide functionality to implement penalized PCA with an option to smooth the objective function using Nesterov smoothing. Two functions are available to compute a user-specified number of eigenvectors. The function unsmoothed_penalized_EV() computes a penalized PCA without smoothing and has three parameters (the input matrix, the Lasso penalty, and the number of desired eigenvectors). The function smoothed_penalized_EV() computes a smoothed penalized PCA using the same parameters and additionally requires the specification of a smoothing parameter. Both functions return a matrix having the desired eigenvectors as columns.
This package contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) <doi:10.1007/s10654-016-0157-3>. Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models.
The package performs a sensitivity analysis in an observational study using an M-statistic, for instance, the mean. The main function in the package is senmv(), but amplify() and truncatedP() are also useful. The method is developed in Rosenbaum Biometrics, 2007, 63, 456-464, <doi:10.1111/j.1541-0420.2006.00717.x>.
This package implements snake in R as a programming example, see <https://en.wikipedia.org/wiki/Snake_(video_game_genre)>.
This package provides functionality for structural equation modeling for the social relations model (Kenny & La Voie, 1984; <doi:10.1016/S0065-2601(08)60144-6>; Warner, Kenny, & Soto, 1979, <doi:10.1037/0022-3514.37.10.1742>). Maximum likelihood estimation (Gill & Swartz, 2001, <doi:10.2307/3316080>; Nestler, 2018, <doi:10.3102/1076998617741106>) and least squares estimation is supported (Bond & Malloy, 2018, <doi:10.1016/B978-0-12-811967-9.00014-X>).
Symbolic data analysis methods: importing/exporting data from ASSO XML Files, distance calculation for symbolic data (Ichino-Yaguchi, de Carvalho measure), zoom star plot, 3d interval plot, multidimensional scaling for symbolic interval data, dynamic clustering based on distance matrix, HINoV method for symbolic data, Ichino's feature selection method, principal component analysis for symbolic interval data, decision trees for symbolic data based on optimal split with bagging, boosting and random forest approach (+visualization), kernel discriminant analysis for symbolic data, Kohonen's self-organizing maps for symbolic data, replication and profiling, artificial symbolic data generation. (Milligan, G.W., Cooper, M.C. (1985) <doi:10.1007/BF02294245>, Breiman, L. (1996), <doi:10.1007/BF00058655>, Hubert, L., Arabie, P. (1985), <doi:10.1007%2FBF01908075>, Ichino, M., & Yaguchi, H. (1994), <doi:10.1109/21.286391>, Rand, W.M. (1971) <doi:10.1080/01621459.1971.10482356>, Breckenridge, J.N. (2000) <doi:10.1207/S15327906MBR3502_5>, Groenen, P.J.F, Winsberg, S., Rodriguez, O., Diday, E. (2006) <doi:10.1016/j.csda.2006.04.003>, Dudek, A. (2007), <doi:10.1007/978-3-540-70981-7_4>).
Fit Hawkes and log-Gaussian Cox process models with extensions. Introduced in Hawkes (1971) <doi:10.2307/2334319> a Hawkes process is a self-exciting temporal point process where the occurrence of an event immediately increases the chance of another. We extend this to consider self-inhibiting process and a non-homogeneous background rate. A log-Gaussian Cox process is a Poisson point process where the log-intensity is given by a Gaussian random field. We extend this to a joint likelihood formulation fitting a marked log-Gaussian Cox model. In addition, the package offers functionality to fit self-exciting spatiotemporal point processes. Models are fitted via maximum likelihood using TMB (Template Model Builder). Where included 1) random fields are assumed to be Gaussian and are integrated over using the Laplace approximation and 2) a stochastic partial differential equation model, introduced by Lindgren, Rue, and Lindström. (2011) <doi:10.1111/j.1467-9868.2011.00777.x>, is defined for the field(s).
We designed this package to provide several functions for area level of small area estimation using hierarchical Bayesian (HB) method. This package provides model using panel data for variable interest.This package also provides a dataset produced by a data generation. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean. For the reference, see Rao and Molina (2015).
Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) for polytomous items. Package includes functions for generating a sequential relation table and a treegram to visualize the sequential relations between pairs of items.
This package provides tools for spatial data analysis. Emphasis on kriging. Provides functions for prediction and simulation. Intended to be relatively straightforward, fast, and flexible.
This package provides methods that use flexible variants of multidimensional scaling (MDS) which incorporate parametric nonlinear distance transformations and trade-off the goodness-of-fit fit with structure considerations to find optimal hyperparameters, also known as structure optimized proximity scaling (STOPS) (Rusch, Mair & Hornik, 2023,<doi:10.1007/s11222-022-10197-w>). The package contains various functions, wrappers, methods and classes for fitting, plotting and displaying different 1-way MDS models with ratio, interval, ordinal optimal scaling in a STOPS framework. These cover essentially the functionality of the package smacofx, including Torgerson (classical) scaling with power transformations of dissimilarities, SMACOF MDS with powers of dissimilarities, Sammon mapping with powers of dissimilarities, elastic scaling with powers of dissimilarities, spherical SMACOF with powers of dissimilarities, (ALSCAL) s-stress MDS with powers of dissimilarities, r-stress MDS, MDS with powers of dissimilarities and configuration distances, elastic scaling powers of dissimilarities and configuration distances, Sammon mapping powers of dissimilarities and configuration distances, power stress MDS (POST-MDS), approximate power stress, Box-Cox MDS, local MDS, Isomap, curvilinear component analysis (CLCA), curvilinear distance analysis (CLDA) and sparsified (power) multidimensional scaling and (power) multidimensional distance analysis (experimental models from smacofx influenced by CLCA). All of these models can also be fit by optimizing over hyperparameters based on goodness-of-fit fit only (i.e., no structure considerations). The package further contains functions for optimization, specifically the adaptive Luus-Jaakola algorithm and a wrapper for Bayesian optimization with treed Gaussian process with jumps to linear models, and functions for various c-structuredness indices. Hyperparameter optimization can be done with a number of techniques but we recommend either Bayesian optimization or particle swarm. For using "Kriging", users need to install a version of the archived DiceOptim R package.