_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-spiga 1.0.0
Propagated dependencies: r-ga@3.2.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SPIGA
Licenses: GPL 2
Synopsis: Compute SPI Index using the Methods Genetic Algorithm and Maximum Likelihood
Description:

Calculate the Standardized Precipitation Index (SPI) for monitoring drought, using Artificial Intelligence techniques (SPIGA) and traditional numerical technique Maximum Likelihood (SPIML). For more information see: http://drought.unl.edu/monitoringtools/downloadablespiprogram.aspx.

r-strucchangercpp 1.5-4-1.0.1
Propagated dependencies: r-zoo@1.8-14 r-sandwich@3.1-1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/bfast2/strucchangeRcpp/
Licenses: GPL 2 GPL 3
Synopsis: Testing, Monitoring, and Dating Structural Changes: C++ Version
Description:

This package provides a fast implementation with additional experimental features for testing, monitoring and dating structural changes in (linear) regression models. strucchangeRcpp features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g. cumulative/moving sum, recursive/moving estimates) and F statistics, respectively. These methods are described in Zeileis et al. (2002) <doi:10.18637/jss.v007.i02>. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals, and their magnitude as well as the model fit can be evaluated using a variety of statistical measures.

r-simtimer 4.0.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: http://github.com/ims-fhs/simtimer
Licenses: GPL 3
Synopsis: Datetimes as Integers for Discrete-Event Simulations
Description:

Handles datetimes as integers for the usage inside Discrete-Event Simulations (DES). The conversion is made using the internally generic function as.numeric() of the base package. DES is described in Simulation Modeling and Analysis by Averill Law and David Kelton (1999) <doi:10.2307/2288169>.

r-stgam 1.1.0
Propagated dependencies: r-mgcv@1.9-4 r-glue@1.8.0 r-foreach@1.5.2 r-dplyr@1.1.4 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/lexcomber/stgam
Licenses: Expat
Synopsis: Spatially and Temporally Varying Coefficient Models Using Generalized Additive Models
Description:

This package provides a framework for specifying spatially, temporally and spatially-and-temporally varying coefficient models using Generalized Additive Models with smooths. The smooths are parameterised with location, time and predictor variables. The framework supports the investigation of the presence and nature of any space-time dependencies in the data by evaluating multiple model forms (specifications) using a Generalized Cross-Validation score. The workflow sequence is to: i) Prepare the data by lengthening it to have a single location and time variables for each observation. ii) Evaluate all possible spatial and/or temporal models in which each predictor is specified in different ways. iii) Evaluate each model and pick the best one. iv) Create the final model. v) Calculate the varying coefficient estimates to quantify how the relationships between the target and predictor variables vary over space, time or space-time. vi) Create maps, time series plots etc. For more details see: Comber et al (2023) <doi:10.4230/LIPIcs.GIScience.2023.22>, Comber et al (2024) <doi:10.1080/13658816.2023.2270285> and Comber et al (2004) <doi:10.3390/ijgi13120459>.

r-sdmtmb 0.8.0
Propagated dependencies: r-tmb@1.9.18 r-rlang@1.1.6 r-rcppeigen@0.3.4.0.2 r-nlme@3.1-168 r-mvtnorm@1.3-3 r-mgcv@1.9-4 r-matrix@1.7-4 r-lme4@1.1-37 r-lifecycle@1.0.4 r-generics@0.1.4 r-fmesher@0.5.0 r-fishmod@0.29.2 r-extradistr@1.10.0 r-cli@3.6.5 r-assertthat@0.2.1 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://sdmTMB.github.io/sdmTMB/
Licenses: GPL 3
Synopsis: Spatial and Spatiotemporal SPDE-Based GLMMs with 'TMB'
Description:

This package implements spatial and spatiotemporal GLMMs (Generalized Linear Mixed Effect Models) using TMB', fmesher', and the SPDE (Stochastic Partial Differential Equation) Gaussian Markov random field approximation to Gaussian random fields. One common application is for spatially explicit species distribution models (SDMs). See Anderson et al. (2024) <doi:10.1101/2022.03.24.485545>.

r-shinylight 1.2
Propagated dependencies: r-later@1.4.4 r-jsonlite@2.0.0 r-httpuv@1.6.16
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=shinylight
Licenses: GPL 3
Synopsis: Web Interface to 'R' Functions
Description:

Web front end for your R functions producing plots or tables. If you have a function or set of related functions, you can make them available over the internet through a web browser. This is the same motivation as the shiny package, but note that the development of shinylight is not in any way linked to that of shiny (beyond the use of the httpuv package). You might prefer shinylight to shiny if you want a lighter weight deployment with easier horizontal scaling, or if you want to develop your front end yourself in JavaScript and HTML just using a lightweight remote procedure call interface to your R code on the server.

r-sesraster 0.7.1
Propagated dependencies: r-terra@1.8-86 r-rlang@1.1.6
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://CRAN.R-project.org/package=SESraster
Licenses: GPL 3+
Synopsis: Raster Randomization for Null Hypothesis Testing
Description:

Randomization of presence/absence species distribution raster data with or without including spatial structure for calculating standardized effect sizes and testing null hypothesis. The randomization algorithms are based on classical algorithms for matrices (Gotelli 2000, <doi:10.2307/177478>) implemented for raster data.

r-selfingtree 0.2
Propagated dependencies: r-foreach@1.5.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=selfingTree
Licenses: Modified BSD
Synopsis: Genotype Probabilities in Intermediate Generations of Inbreeding Through Selfing
Description:

This package provides a probability tree allows to compute probabilities of complex events, such as genotype probabilities in intermediate generations of inbreeding through recurrent self-fertilization (selfing). This package implements functionality to compute probability trees for two- and three-marker genotypes in the F2 to F7 selfing generations. The conditional probabilities are derived automatically and in symbolic form. The package also provides functionality to extract and evaluate the relevant probabilities.

r-statisfactory 1.0.4
Propagated dependencies: r-omnibus@1.2.15
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/adamlilith/statisfactory
Licenses: GPL 3+
Synopsis: Statistical and Geometrical Tools
Description:

This package provides a collection of statistical and geometrical tools including the aligned rank transform (ART; Higgins et al. 1990 <doi:10.4148/2475-7772.1443>; Peterson 2002 <doi:10.22237/jmasm/1020255240>; Wobbrock et al. 2011 <doi:10.1145/1978942.1978963>), 2-D histograms and histograms with overlapping bins, a function for making all possible formulae within a set of constraints, amongst others.

r-sgapi 1.1.2
Propagated dependencies: r-xml2@1.5.0 r-sf@1.0-23 r-readr@2.1.6 r-magrittr@2.0.4 r-httr@1.4.7 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://defra-data-science-centre-of-excellence.github.io/sgapi/
Licenses: Expat
Synopsis: Aid Querying 'nomis' and 'Office for National Statistics Open Geography' APIs
Description:

Facilitates extraction of geospatial data from the Office for National Statistics Open Geography and nomis Application Programming Interfaces (APIs). Simplifies process of querying nomis datasets <https://www.nomisweb.co.uk/> and extracting desired datasets in dataframe format. Extracts area shapefiles at chosen resolution from Office for National Statistics Open Geography <https://geoportal.statistics.gov.uk/>.

r-shinybrms 1.8.1
Propagated dependencies: r-shiny@1.11.1 r-rstan@2.32.7 r-rlang@1.1.6 r-brms@2.23.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://fweber144.github.io/shinybrms/
Licenses: GPL 3 FSDG-compatible
Synopsis: Graphical User Interface ('shiny' App) for 'brms'
Description:

This package provides a graphical user interface (GUI) for fitting Bayesian regression models using the package brms which in turn relies on Stan (<https://mc-stan.org/>). The shinybrms GUI is a shiny app.

r-sparrpowr 0.2.9
Propagated dependencies: r-terra@1.8-86 r-spatstat-random@3.4-3 r-spatstat-geom@3.6-1 r-sparr@2.3-16 r-lifecycle@1.0.4 r-iterators@1.0.14 r-future@1.68.0 r-foreach@1.5.2 r-fields@17.1 r-dorng@1.8.6.2 r-dofuture@1.1.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/machiela-lab/sparrpowR
Licenses: ASL 2.0
Synopsis: Power Analysis to Detect Spatial Relative Risk Clusters
Description:

Calculate the statistical power to detect clusters using kernel-based spatial relative risk functions that are estimated using the sparr package. Details about the sparr package methods can be found in the tutorial: Davies et al. (2018) <doi:10.1002/sim.7577>. Details about kernel density estimation can be found in J. F. Bithell (1990) <doi:10.1002/sim.4780090616>. More information about relative risk functions using kernel density estimation can be found in J. F. Bithell (1991) <doi:10.1002/sim.4780101112>.

r-sparseflmm 0.4.2
Propagated dependencies: r-refund@0.1-38 r-mgcv@1.9-4 r-matrix@1.7-4 r-mass@7.3-65 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sparseFLMM
Licenses: GPL 2
Synopsis: Functional Linear Mixed Models for Irregularly or Sparsely Sampled Data
Description:

Estimation of functional linear mixed models for irregularly or sparsely sampled data based on functional principal component analysis.

r-sparsedfm 1.0
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-matrix@1.7-4 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sparseDFM
Licenses: GPL 3+
Synopsis: Estimate Dynamic Factor Models with Sparse Loadings
Description:

Implementation of various estimation methods for dynamic factor models (DFMs) including principal components analysis (PCA) Stock and Watson (2002) <doi:10.1198/016214502388618960>, 2Stage Giannone et al. (2008) <doi:10.1016/j.jmoneco.2008.05.010>, expectation-maximisation (EM) Banbura and Modugno (2014) <doi:10.1002/jae.2306>, and the novel EM-sparse approach for sparse DFMs Mosley et al. (2023) <arXiv:2303.11892>. Options to use classic multivariate Kalman filter and smoother (KFS) equations from Shumway and Stoffer (1982) <doi:10.1111/j.1467-9892.1982.tb00349.x> or fast univariate KFS equations from Koopman and Durbin (2000) <doi:10.1111/1467-9892.00186>, and options for independent and identically distributed (IID) white noise or auto-regressive (AR(1)) idiosyncratic errors. Algorithms coded in C++ and linked to R via RcppArmadillo'.

r-sentimentanalysis 1.3-5
Propagated dependencies: r-tm@0.7-16 r-stringdist@0.9.15 r-spikeslab@1.1.6 r-qdapdictionaries@1.0.7 r-ngramrr@0.2.0 r-moments@0.14.1 r-glmnet@4.1-10 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/sfeuerriegel/SentimentAnalysis
Licenses: Expat
Synopsis: Dictionary-Based Sentiment Analysis
Description:

This package performs a sentiment analysis of textual contents in R. This implementation utilizes various existing dictionaries, such as Harvard IV, or finance-specific dictionaries. Furthermore, it can also create customized dictionaries. The latter uses LASSO regularization as a statistical approach to select relevant terms based on an exogenous response variable.

r-spower 0.5.1
Propagated dependencies: r-simdesign@2.21 r-polycor@0.8-1 r-plotly@4.11.0 r-parallelly@1.45.1 r-lavaan@0.6-20 r-ggplot2@4.0.1 r-envstats@3.1.0 r-cocor@1.1-4 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/philchalmers/Spower
Licenses: GPL 3+
Synopsis: Power Analyses using Monte Carlo Simulations
Description:

This package provides a general purpose simulation-based power analysis API for routine and customized simulation experimental designs. The package focuses exclusively on Monte Carlo simulation experiment variants of (expected) prospective power analyses, criterion analyses, compromise analyses, sensitivity analyses, and a priori/post-hoc analyses. The default simulation experiment functions defined within the package provide stochastic variants of the power analysis subroutines in G*Power 3.1 (Faul, Erdfelder, Buchner, and Lang, 2009) <doi:10.3758/brm.41.4.1149>, along with various other parametric and non-parametric power analysis applications (e.g., mediation analyses) and support for Bayesian power analysis by way of Bayes factors or posterior probability evaluations. Additional functions for building empirical power curves, reanalyzing simulation information, and for increasing the precision of the resulting power estimates are also included, each of which utilize similar API structures. For further details see the associated publication in Chalmers (2025) <doi:10.3758/s13428-025-02787-z>.

r-shiny-semantic 0.5.1
Propagated dependencies: r-shiny@1.11.1 r-semantic-assets@1.1.0 r-r6@2.6.1 r-purrr@1.2.0 r-magrittr@2.0.4 r-jsonlite@2.0.0 r-htmlwidgets@1.6.4 r-htmltools@0.5.8.1 r-glue@1.8.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://appsilon.github.io/shiny.semantic/
Licenses: Expat
Synopsis: Semantic UI Support for Shiny
Description:

Creating a great user interface for your Shiny apps can be a hassle, especially if you want to work purely in R and don't want to use, for instance HTML templates. This package adds support for a powerful UI library Fomantic UI - <https://fomantic-ui.com/> (before Semantic). It also supports universal UI input binding that works with various DOM elements.

r-starter 0.1.16
Propagated dependencies: r-rstudioapi@0.17.1 r-rprojroot@2.1.1 r-rlang@1.1.6 r-renv@1.1.5 r-r-utils@2.13.0 r-glue@1.8.0 r-gert@2.2.0 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ddsjoberg/starter
Licenses: AGPL 3+
Synopsis: Starter Kit for New Projects
Description:

Get started with new projects by dropping a skeleton of a new project into a new or existing directory, initialise git repositories, and create reproducible environments with the renv package. The package allows for dynamically named files, folders, file content, as well as the functionality to drop individual template files into existing projects.

r-sfar 1.0.1
Propagated dependencies: r-ucminf@1.2.2 r-trustoptim@0.8.7.3 r-texreg@1.39.4 r-sandwich@3.1-1 r-randtoolbox@2.0.5 r-qrng@0.0-10 r-plm@2.6-7 r-nleqslv@3.3.5 r-mnorm@1.2.2 r-maxlik@1.5-2.1 r-marqlevalg@2.0.8 r-formula@1.2-5 r-fastghquad@1.0.1 r-cubature@2.1.4-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/hdakpo/sfaR
Licenses: GPL 3+
Synopsis: Stochastic Frontier Analysis Routines
Description:

Maximum likelihood estimation for stochastic frontier analysis (SFA) of production (profit) and cost functions. The package includes the basic stochastic frontier for cross-sectional or pooled data with several distributions for the one-sided error term (i.e., Rayleigh, gamma, Weibull, lognormal, uniform, generalized exponential and truncated skewed Laplace), the latent class stochastic frontier model (LCM) as described in Dakpo et al. (2021) <doi:10.1111/1477-9552.12422>, for cross-sectional and pooled data, and the sample selection model as described in Greene (2010) <doi:10.1007/s11123-009-0159-1>, and applied in Dakpo et al. (2021) <doi:10.1111/agec.12683>. Several possibilities in terms of optimization algorithms are proposed.

r-sgdinference 0.1.0
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/SGDinference-Lab/SGDinference/
Licenses: GPL 3
Synopsis: Inference with Stochastic Gradient Descent
Description:

Estimation and inference methods for large-scale mean and quantile regression models via stochastic (sub-)gradient descent (S-subGD) algorithms. The inference procedure handles cross-sectional data sequentially: (i) updating the parameter estimate with each incoming "new observation", (ii) aggregating it as a Polyak-Ruppert average, and (iii) computing an asymptotically pivotal statistic for inference through random scaling. The methodology used in the SGDinference package is described in detail in the following papers: (i) Lee, S., Liao, Y., Seo, M.H. and Shin, Y. (2022) <doi:10.1609/aaai.v36i7.20701> "Fast and robust online inference with stochastic gradient descent via random scaling". (ii) Lee, S., Liao, Y., Seo, M.H. and Shin, Y. (2023) <arXiv:2209.14502> "Fast Inference for Quantile Regression with Tens of Millions of Observations".

r-samplingbook 1.2.4
Propagated dependencies: r-survey@4.4-8 r-sampling@2.11 r-pps@1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://www.samplingbook.manitz.org
Licenses: GPL 2+
Synopsis: Survey Sampling Procedures
Description:

Sampling procedures from the book Stichproben - Methoden und praktische Umsetzung mit R by Goeran Kauermann and Helmut Kuechenhoff (2010).

r-sovereign 1.2.1
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-tidyr@1.3.1 r-strucchange@1.5-4 r-stringr@1.6.0 r-sandwich@3.1-1 r-randomforest@4.7-1.2 r-purrr@1.2.0 r-mclust@6.1.2 r-magrittr@2.0.4 r-lubridate@1.9.4 r-lmtest@0.9-40 r-gridextra@2.3 r-ggplot2@4.0.1 r-future@1.68.0 r-furrr@0.3.1 r-dplyr@1.1.4 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/tylerJPike/sovereign
Licenses: GPL 3
Synopsis: State-Dependent Empirical Analysis
Description:

This package provides a set of tools for state-dependent empirical analysis through both VAR- and local projection-based state-dependent forecasts, impulse response functions, historical decompositions, and forecast error variance decompositions.

r-splittools 1.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/mayer79/splitTools
Licenses: GPL 2+
Synopsis: Tools for Data Splitting
Description:

Fast, lightweight toolkit for data splitting. Data sets can be partitioned into disjoint groups (e.g. into training, validation, and test) or into (repeated) k-folds for subsequent cross-validation. Besides basic splits, the package supports stratified, grouped as well as blocked splitting. Furthermore, cross-validation folds for time series data can be created. See e.g. Hastie et al. (2001) <doi:10.1007/978-0-387-84858-7> for the basic background on data partitioning and cross-validation.

r-staninside 0.0.4
Propagated dependencies: r-rappdirs@0.3.3 r-fs@1.6.6 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/medewitt/staninside
Licenses: Expat
Synopsis: Facilitating the Use of 'Stan' Within Packages
Description:

Infrastructure and functions that can be used for integrating Stan (Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>) code into stand alone R packages which in turn use the CmdStan engine which is often accessed through CmdStanR'. Details given in Stan Development Team (2025) <https://mc-stan.org/cmdstanr/>. Using CmdStanR and pre-written Stan code can make package installation easy. Using staninside offers a way to cache user-compiled Stan models in user-specified directories reducing the need to recompile the same model multiple times.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208