Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Plots that illustrate the flow of information or material.
This package contains fast functions to calculate the exact Bayes posterior for the Sparse Normal Sequence Model, implementing the algorithms described in Van Erven and Szabo (2021, <doi:10.1214/20-BA1227>). For general hierarchical priors, sample sizes up to 10,000 are feasible within half an hour on a standard laptop. For beta-binomial spike-and-slab priors, a faster algorithm is provided, which can handle sample sizes of 100,000 in half an hour. In the implementation, special care has been taken to assure numerical stability of the methods even for such large sample sizes.
Parameter estimation for stochastic volatility models using maximum likelihood. The latent log-volatility is integrated out of the likelihood using the Laplace approximation. The models are fitted via TMB (Template Model Builder) (Kristensen, Nielsen, Berg, Skaug, and Bell (2016) <doi:10.18637/jss.v070.i05>).
Automatic generation and selection of spatial predictors for Random Forest models fitted to spatially structured data. Spatial predictors are constructed from a distance matrix among training samples using Moran's Eigenvector Maps (MEMs; Dray, Legendre, and Peres-Neto 2006 <DOI:10.1016/j.ecolmodel.2006.02.015>) or the RFsp approach (Hengl et al. <DOI:10.7717/peerj.5518>). These predictors are used alongside user-supplied explanatory variables in Random Forest models. The package provides functions for model fitting, multicollinearity reduction, interaction identification, hyperparameter tuning, evaluation via spatial cross-validation, and result visualization using partial dependence and interaction plots. Model fitting relies on the ranger package (Wright and Ziegler 2017 <DOI:10.18637/jss.v077.i01>).
Hail is an open-source, general-purpose, python based data analysis tool with additional data types and methods for working with genomic data, see <https://hail.is/>. Hail is built to scale and has first-class support for multi-dimensional structured data, like the genomic data in a genome-wide association study (GWAS). Hail is exposed as a python library, using primitives for distributed queries and linear algebra implemented in scala', spark', and increasingly C++'. The sparkhail is an R extension using sparklyr package. The idea is to help R users to use hail functionalities with the well-know tidyverse syntax, see <https://www.tidyverse.org/>.
Toolbox for different kinds of spatio-temporal analyses to be performed on observed point patterns, following the growing stream of literature on point process theory. This R package implements functions to perform different kinds of analyses on point processes, proposed in the papers (Siino, Adelfio, and Mateu 2018<doi:10.1007/s00477-018-1579-0>; Siino et al. 2018<doi:10.1002/env.2463>; Adelfio et al. 2020<doi:10.1007/s00477-019-01748-1>; Dâ Angelo, Adelfio, and Mateu 2021<doi:10.1016/j.spasta.2021.100534>; Dâ Angelo, Adelfio, and Mateu 2022<doi:10.1007/s00362-022-01338-4>; Dâ Angelo, Adelfio, and Mateu 2023<doi:10.1016/j.csda.2022.107679>). The main topics include modeling, statistical inference, and simulation issues on spatio-temporal point processes on Euclidean space and linear networks. Version 1.0.0 has been updated for accompanying the journal publication D Angelo and Adelfio 2025 <doi:10.18637/jss.v113.i10>.
Generates random values from a univariate and multivariate continuous distribution by using kernel density estimation based on a sample. Duong (2017) <doi:10.18637/jss.v021.i07>, Christian P. Robert and George Casella (2010 ISBN:978-1-4419-1575-7) <doi:10.1007/978-1-4419-1576-4>.
The Stratified-Petersen Analysis System (SPAS) is designed to estimate abundance in two-sample capture-recapture experiments where the capture and recaptures are stratified. This is a generalization of the simple Lincoln-Petersen estimator. Strata may be defined in time or in space or both, and the s strata in which marking takes place may differ from the t strata in which recoveries take place. When s=t, SPAS reduces to the method described by Darroch (1961) <doi:10.2307/2332748>. When s<t, SPAS implements the methods described in Plante, Rivest, and Tremblay (1988) <doi:10.2307/2533994>. Schwarz and Taylor (1998) <doi:10.1139/f97-238> describe the use of SPAS in estimating return of salmon stratified by time and geography. A related package, BTSPAS, deals with temporal stratification where a spline is used to model the distribution of the population over time as it passes the second capture location. This is the R-version of the (now obsolete) standalone Windows program of the same name.
Utility functions that help with common base-R problems relating to lists. Lists in base-R are very flexible. This package provides functions to quickly and easily characterize types of lists. That is, to identify if all elements in a list are null, data.frames, lists, or fully named lists. Other functionality is provided for the handling of lists, such as the easy splitting of lists into equally sized groups, and the unnesting of data.frames within fully named lists.
SCEPtER pipeline for estimating the stellar age for double-lined detached binary systems. The observational constraints adopted in the recovery are the effective temperature, the metallicity [Fe/H], the mass, and the radius of the two stars. The results are obtained adopting a maximum likelihood technique over a grid of pre-computed stellar models.
Proxy forward modelling for sediment archived climate proxies such as Mg/Ca, d18O or Alkenones. The user provides a hypothesised "true" past climate, such as output from a climate model, and details of the sedimentation rate and sampling scheme of a sediment core. Sedproxy returns simulated proxy records. Implements the methods described in Dolman and Laepple (2018) <doi:10.5194/cp-14-1851-2018>.
Basic functions for dealing with wav files and sound samples.
This package creates simulated data from structural equation models with standardized loading. Data generation methods are described in Schneider (2013) <doi:10.1177/0734282913478046>.
This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2023) <doi:10.48550/arXiv.2308.04325>, and allows for the statistical modeling of asymmetric between-location effects, as well as within-location effects using spatial autoregressive graphical models. The package allows for the generation of spatial weight matrices to capture asymmetric effects for strip-type intercropping designs, although it can handle any type of spatial data commonly found in other sciences.
Calculates constant structure parameters of endocrine homeostatic systems from equilibrium hormone concentrations. Methods and equations have been described in Dietrich et al. (2012) <doi:10.1155/2012/351864> and Dietrich et al. (2016) <doi:10.3389/fendo.2016.00057>.
Select best combination of auxiliary variables with certain criterion.
This package provides tools for designing spatially explicit capture-recapture studies of animal populations. This is primarily a simulation manager for package secr'. Extensions in version 2.5.0 include costing and evaluation of detector spacing.
This package implements the revised Synthetic Matching Algorithm of Kreitmeir, Lane, and Raschky (2025) <doi:10.2139/ssrn.3751162>, building on the original approach of Acemoglu, Johnson, Kermani, Kwak, and Mitton (2016) <doi:10.1016/j.jfineco.2015.10.001>, to estimate the cumulative treatment effect of an event on treated firmsâ stock returns.
Monte Carlo confidence intervals for free and defined parameters in models fitted in the structural equation modeling package lavaan can be generated using the semmcci package. semmcci has three main functions, namely, MC(), MCMI(), and MCStd(). The output of lavaan is passed as the first argument to the MC() function or the MCMI() function to generate Monte Carlo confidence intervals. Monte Carlo confidence intervals for the standardized estimates can also be generated by passing the output of the MC() function or the MCMI() function to the MCStd() function. A description of the package and code examples are presented in Pesigan and Cheung (2024) <doi:10.3758/s13428-023-02114-4>.
Estimation of two-state (survival) models and irreversible illness- death models with possibly interval-censored, left-truncated and right-censored data. Proportional intensities regression models can be specified to allow for covariates effects separately for each transition. We use either a parametric approach with Weibull baseline intensities or a semi-parametric approach with M-splines approximation of baseline intensities in order to obtain smooth estimates of the hazard functions. Parameter estimates are obtained by maximum likelihood in the parametric approach and by penalized maximum likelihood in the semi-parametric approach.
We develop a novel matrix factorization tool named scINSIGHT to jointly analyze multiple single-cell gene expression samples from biologically heterogeneous sources, such as different disease phases, treatment groups, or developmental stages. Given multiple gene expression samples from different biological conditions, scINSIGHT simultaneously identifies common and condition-specific gene modules and quantify their expression levels in each sample in a lower-dimensional space. With the factorized results, the inferred expression levels and memberships of common gene modules can be used to cluster cells and detect cell identities, and the condition-specific gene modules can help compare functional differences in transcriptomes from distinct conditions. Please also see Qian K, Fu SW, Li HW, Li WV (2022) <doi:10.1186/s13059-022-02649-3>.
This package performs estimation and testing of the treatment effect in a 2-group randomized clinical trial with a quantitative, dichotomous, or right-censored time-to-event endpoint. The method improves efficiency by leveraging baseline predictors of the endpoint. The inverse probability weighting technique of Robins, Rotnitzky, and Zhao (JASA, 1994) is used to provide unbiased estimation when the endpoint is missing at random.
This package implements the S-type estimators, novel robust estimators for general linear regression models, addressing challenges such as outlier contamination and leverage points. This package introduces robust regression techniques to provide a robust alternative to classical methods and includes diagnostic tools for assessing model fit and performance. The methodology is based on the study, "Comparison of the Robust Methods in the General Linear Regression Model" by Sazak and Mutlu (2023). This package is designed for statisticians and applied researchers seeking advanced tools for robust regression analysis.
Summary ellipses superimposed on a scatter plot contain all bi-variate summary statistics for regression analysis. Furthermore, the outer ellipse flags potential outliers. Multiple groups can be compared in terms of centers and spreads as illustrated in the examples.