Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Uses C++ via the Rcpp package to parse modern Excel files ('.xlsx'). Memory usage is kept minimal by decompressing only parts of the file at a time, while employing multiple threads to achieve significant runtime reduction. Uses <https://github.com/richgel999/miniz> and <https://github.com/lemire/fast_double_parser>.
Access, modify, aggregate and plot data from the Sapfluxnet project, the first global database of sap flow measurements.
Computes the effective range of a smoothing matrix, which is a measure of the distance to which smoothing occurs. This is motivated by the application of spatial splines for adjusting for unmeasured spatial confounding in regression models, but the calculation of effective range can be applied to smoothing matrices in other contexts. For algorithmic details, see Rainey and Keller (2024) "spconfShiny: an R Shiny application..." <doi:10.1371/journal.pone.0311440> and Keller and Szpiro (2020) "Selecting a Scale for Spatial Confounding Adjustment" <doi:10.1111/rssa.12556>.
Transform complex statistical output into straightforward, understandable, and context-aware natural language descriptions using Large Language Models (LLMs), making complex analyses more accessible to individuals with varying statistical expertise. It relies on the ellmer package to interface with LLM providers including OpenAI <https://openai.com/>, Google AI Studio <https://aistudio.google.com/>, and Anthropic <https://www.anthropic.com/> (API keys are required and managed via ellmer').
This package provides a tool for survival analysis using a discrete time approach with ensemble binary classification. spect provides a simple interface consistent with commonly used R data analysis packages, such as caret', a variety of parameter options to help facilitate search automation, a high degree of transparency to the end-user - all intermediate data sets and parameters are made available for further analysis and useful, out-of-the-box visualizations of model performance. Methods for transforming survival data into discrete-time are adapted from the autosurv package by Suresh et al., (2022) <doi:10.1186/s12874-022-01679-6>.
The main function is icweib(), which fits a stratified Weibull proportional hazards model for left censored, right censored, interval censored, and non-censored survival data. We parameterize the Weibull regression model so that it allows a stratum-specific baseline hazard function, but where the effects of other covariates are assumed to be constant across strata. Please refer to Xiangdong Gu, David Shapiro, Michael D. Hughes and Raji Balasubramanian (2014) <doi:10.32614/RJ-2014-003> for more details.
Fit latent variable models with the GEV distribution as the data likelihood and the GEV parameters following latent Gaussian processes. The models in this package are built using the template model builder TMB in R, which has the fast ability to integrate out the latent variables using Laplace approximation. This package allows the users to choose in the fit function which GEV parameter(s) is considered as a spatially varying random effect following a Gaussian process, so the users can fit spatial GEV models with different complexities to their dataset without having to write the models in TMB by themselves. This package also offers methods to sample from both fixed and random effects posteriors as well as the posterior predictive distributions at different spatial locations. Methods for fitting this class of models are described in Chen, Ramezan, and Lysy (2024) <doi:10.48550/arXiv.2110.07051>.
This package contains an implementation of invariant causal prediction for sequential data. The main function in the package is seqICP', which performs linear sequential invariant causal prediction and has guaranteed type I error control. For non-linear dependencies the package also contains a non-linear method seqICPnl', which allows to input any regression procedure and performs tests based on a permutation approach that is only approximately correct. In order to test whether an individual set S is invariant the package contains the subroutines seqICP.s and seqICPnl.s corresponding to the respective main methods.
Tree-structured modelling of categorical predictors (Tutz and Berger (2018), <doi:10.1007/s11634-017-0298-6>) or measurement units (Berger and Tutz (2018), <doi:10.1080/10618600.2017.1371030>).
This package provides some basic routines for simulating a clinical trial. The primary intent is to provide some tools to generate trial simulations for trials with time to event outcomes. Piecewise exponential failure rates and piecewise constant enrollment rates are the underlying mechanism used to simulate a broad range of scenarios such as those presented in Lin et al. (2020) <doi:10.1080/19466315.2019.1697738>. However, the basic generation of data is done using pipes to allow maximum flexibility for users to meet different needs.
This package performs a sentiment analysis of textual contents in R. This implementation utilizes various existing dictionaries, such as Harvard IV, or finance-specific dictionaries. Furthermore, it can also create customized dictionaries. The latter uses LASSO regularization as a statistical approach to select relevant terms based on an exogenous response variable.
An automatic cluster-based annotation pipeline based on evidence-based score by matching the marker genes with known cell markers in tissue-specific cell taxonomy reference database for single-cell RNA-seq data. See Shao X, et al (2020) <doi:10.1016/j.isci.2020.100882> for more details.
Ozone, NOx (= Sum of nitrogen monoxide and nitrogen dioxide), nitrogen monoxide, ambient temperature, dew point, wind speed and wind direction at 3 sites around lake of Lucerne in Central Switzerland in 30 min time resolution for year 2004.
Create panel data consisting of independent states from 1816 to the present. The package includes the Gleditsch & Ward (G&W) and Correlates of War (COW) lists of independent states, as well as helper functions for working with state panel data and standardizing other data sources to create country-year/month/etc. data.
This package provides functions for stratified sampling and assigning custom labels to data, ensuring randomness within groups. The package supports various sampling methods such as stratified, cluster, and systematic sampling. It allows users to apply transformations and customize the sampling process. This package can be useful for statistical analysis and data preparation tasks.
Computes multivariate normal (MVN) densities, and samples from MVN distributions, when the covariance or precision matrix is sparse.
This package provides functionality for analytically calculating parameters (via the InteractionPoweR package) useful for simulation of moderated multiple regression, based on the correlations among the predictors and outcome and the reliability of predictors.
Short and understandable commands that generate tabulated, formatted, and rounded survey estimates. Mostly a wrapper for the survey package (Lumley (2004) <doi:10.18637/jss.v009.i08> <https://CRAN.R-project.org/package=survey>) that identifies low-precision estimates using the National Center for Health Statistics (NCHS) presentation standards (Parker et al. (2017) <https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf>, Parker et al. (2023) <doi:10.15620/cdc:124368>).
Function library for processing collective movement data (e.g. fish schools, ungulate herds, baboon troops) collected from GPS trackers or computer vision tracking software.
Stress Response score (SRscore) is a stress responsiveness measure for transcriptome datasets and is based on the vote-counting method. The SRscore is determined to evaluate and score genes on the basis of the consistency of the direction of their regulation (Up-regulation, Down-regulation, or No change) under stress conditions across multiple analyzed research projects. This package is based on the HN-score (score based on the ratio of gene expression between hypoxic and normoxic conditions) proposed by Tamura and Bono (2022) <doi:10.3390/life12071079>, and can calculate both the original method and an extended calculation method described in Fukuda et al. (2025) <doi:10.1093/plphys/kiaf105>.
Convenient tools for exchanging files securely from within R. By encrypting the content safe passage of files (shipment) can be provided by common but insecure carriers such as ftp and email. Based on asymmetric cryptography no management of shared secrets is needed to make a secure shipment as long as authentic public keys are available. Public keys used for secure shipments may also be obtained from external providers as part of the overall process. Transportation of files will require that relevant services such as ftp and email servers are available.
Genomic alterations including single nucleotide substitution, copy number alteration, etc. are the major force for cancer initialization and development. Due to the specificity of molecular lesions caused by genomic alterations, we can generate characteristic alteration spectra, called signature (Wang, Shixiang, et al. (2021) <DOI:10.1371/journal.pgen.1009557> & Alexandrov, Ludmil B., et al. (2020) <DOI:10.1038/s41586-020-1943-3> & Steele Christopher D., et al. (2022) <DOI:10.1038/s41586-022-04738-6>). This package helps users to extract, analyze and visualize signatures from genomic alteration records, thus providing new insight into cancer study.
This package provides a statistical method for reducing the number of covariates in an analysis by evaluating Variable Importance Measures (VIMPs) derived from the Random Forest algorithm. It performs statistical tests on the VIMPs and outputs whether the covariate is significant along with the p-values.
Simultaneously infers state-dependent diversification across two or more states of a single or multiple traits while accounting for the role of a possible concealed trait. See Herrera-Alsina et al. (2019) <doi:10.1093/sysbio/syy057>.