Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimate necessary sample sizes for comparing the location of data from two groups or categories when the distribution of the data is skewed. The package offers a non-parametric method for a Wilcoxon Mann-Whitney test of location shift as well as methods for several generalized linear models, for instance, Gamma regression.
This package provides basic functions that support an implementation of multi-profile case (Case 3) best-worst scaling (BWS). Case 3 BWS is a question-based survey method to elicit people's preferences for attribute levels. Case 3 BWS constructs various combinations of attribute levels (profiles) and then asks respondents to select the best and worst profiles in each choice set. A main function creates a dataset for the analysis from the choice sets and the responses to the questions. For details on Case 3 BWS, refer to Louviere et al. (2015) <doi:10.1017/CBO9781107337855>.
This package implements self-organising maps combined with hierarchical cluster analysis (SOM-HCA) for clustering and visualization of high-dimensional data. The package includes functions to estimate the optimal map size based on various quality measures and to generate a model using the selected dimensions. It also performs hierarchical clustering on the map nodes to group similar units. Documentation about the SOM-HCA method is provided in Pastorelli et al. (2024) <doi:10.1002/xrs.3388>.
This data-driven phylogenetic comparative method fits stabilizing selection models to continuous trait data, building on the ouch methodology of Butler and King (2004) <doi:10.1086/426002>. The main functions fit a series of Hansen models using stepwise AIC, then identify cases of convergent evolution where multiple lineages have shifted to the same adaptive peak. For more information see Ingram and Mahler (2013) <doi:10.1111/2041-210X.12034>.
Median-of-means is a generic yet powerful framework for scalable and robust estimation. A framework for Bayesian analysis is called M-posterior, which estimates a median of subset posterior measures. For general exposition to the topic, see the paper by Minsker (2015) <doi:10.3150/14-BEJ645>.
This package provides a switch-case construct for R', as it is known from other programming languages. It allows to test multiple, similar conditions in an efficient, easy-to-read manner, so nested if-else constructs can be avoided. The switch-case construct is designed as an R function that allows to return values depending on which condition is met and lets the programmer flexibly decide whether or not to leave the switch-case construct after a case block has been executed.
Collection of conversion, analytical, geodesic, mapping, and plotting functions. Used to support packages and code written by researchers at the Southwest Fisheries Science Center of the National Oceanic and Atmospheric Administration.
The user has the option to utilize the two-dimensional density estimation techniques called smoothed density published by Eilers and Goeman (2004) <doi:10.1093/bioinformatics/btg454>, and pareto density which was evaluated for univariate data by Thrun, Gehlert and Ultsch, 2020 <doi:10.1371/journal.pone.0238835>. Moreover, it provides visualizations of the density estimation in the form of two-dimensional scatter plots in which the points are color-coded based on increasing density. Colors are defined by the one-dimensional clustering technique called 1D distribution cluster algorithm (DDCAL) published by Lux and Rinderle-Ma (2023) <doi:10.1007/s00357-022-09428-6>.
Generate simulated datasets from an initial underlying distribution and apply transformations to obtain realistic data. Implements the NORTA (Normal-to-anything) approach from Cario and Nelson (1997) and other data generating mechanisms. Simple network visualization tools are provided to facilitate communicating the simulation setup.
Structural handling of identity numbers used in the Swedish administration such as personal identity numbers ('personnummer') and organizational identity numbers ('organisationsnummer').
This package implements the Scout method for regression, described in "Covariance-regularized regression and classification for high-dimensional problems", by Witten and Tibshirani (2008), Journal of the Royal Statistical Society, Series B 71(3): 615-636.
Programmatic access to Flipside Crypto data via the Compass RPC API: <https://api-docs.flipsidecrypto.xyz/>. As simple as auto_paginate_query() but with core functions as needed for troubleshooting. Note, 0.1.1 support deprecated 2023-05-31.
We designed this package to provides several functions for area and subarea level of small area estimation under Twofold Subarea Level Model using hierarchical Bayesian (HB) method with Univariate Normal distribution for variables of interest. Some dataset simulated by a data generation are also provided. The rjags package is employed to obtain parameter estimates using Gibbs Sampling algorithm. Model-based estimators involves the HB estimators which include the mean, the variation of mean, and the quantile. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Torabi and Rao (2014) <doi:10.1016/j.jmva.2014.02.001>, Leyla Mohadjer et al.(2007) <http://www.asasrms.org/Proceedings/y2007/Files/JSM2007-000559.pdf>, and Erciulescu et al.(2019) <doi:10.1111/rssa.12390>.
This package provides a framework for undertaking space and time varying coefficient models (varying parameter models) using a Generalized Additive Model (GAM) with smooths approach. The framework suggests the need to investigate for the presence and nature of any space-time dependencies in the data. It proposes a workflow that creates and refines an initial space-time GAM and includes tools to create and evaluate multiple model forms. The workflow sequence is to: i) Prepare the data by lengthening it to have a single location and time variables for each observation. ii) Create all possible space and/or time models in which each predictor is specified in different ways in smooths. iii) Evaluate each model via their AIC value and pick the best one. iv) Create the final model. v) Calculate the varying coefficient estimates to quantify how the relationships between the target and predictor variables vary over space, time or space-time. vi) Create maps, time series plots etc. The number of knots used in each smooth can be specified directly or iteratively increased. This is illustrated with a climate point dataset of the dry rain forest in South America. This builds on work in Comber et al (2024) <doi:10.1080/13658816.2023.2270285> and Comber et al (2004) <doi:10.3390/ijgi13120459>.
This package provides a meta-package that loads the complete sitrep ecosystem for applied epidemiology analysis. This package provides report templates and automatically loads companion packages, including epitabulate (for epidemiological tables), epidict (for data dictionaries), epikit (for epidemiological utilities), and apyramid (for age-sex pyramids). Simply load sitrep to access all functions from the ecosystem.
This package implements the structural forest methodology for the heterogeneous newsvendor model. The package provides tools to prepare data, fit honest newsvendor trees and forests, and obtain point and distributional predictions for demand decisions under uncertainty.
Implementation of all possible forms of 2x2 and 3x3 space-filling curves, i.e., the generalized forms of the Hilbert curve <https://en.wikipedia.org/wiki/Hilbert_curve>, the Peano curve <https://en.wikipedia.org/wiki/Peano_curve> and the Peano curve in the meander type (Figure 5 in <https://eudml.org/doc/141086>). It can generates nxn curves expanded from any specific level-1 units. It also implements the H-curve and the three-dimensional Hilbert curve.
Extension to the spatstat package, containing interactive graphics capabilities.
This package provides functions for evaluating the stability of low-dimensional embeddings and cluster assignments in singleâ cell RNA sequencing (scRNAâ seq) datasets. Starting from a principal component analysis (PCA) object, users can generate multiple replicates of tâ Distributed Stochastic Neighbor Embedding (tâ SNE) or Uniform Manifold Approximation and Projection (UMAP) embeddings. Embedding stability is quantified by computing pairwise Kendallâ s Tau correlations across replicates and summarizing the distribution of correlation coefficients. In addition to dimensionality reduction, scStability assesses clustering consistency using either Louvain or Leiden algorithms and calculating the Normalized Mutual Information (NMI) between all pairs of cluster assignments. For background on UMAP and t-SNE algorithms, see McInnes et al. (2020, <doi:10.21105/joss.00861>) and van der Maaten & Hinton (2008, <https://github.com/lvdmaaten/bhtsne>), respectively.
Allows fitting of step-functions to univariate serial data where neither the number of jumps nor their positions is known by implementing the multiscale regression estimators SMUCE, simulataneous multiscale changepoint estimator, (K. Frick, A. Munk and H. Sieling, 2014) <doi:10.1111/rssb.12047> and HSMUCE, heterogeneous SMUCE, (F. Pein, H. Sieling and A. Munk, 2017) <doi:10.1111/rssb.12202>. In addition, confidence intervals for the change-point locations and bands for the unknown signal can be obtained.
This package performs correlation matrix segmentation and applies a test procedure to detect highly correlated regions in gene expression.
The SAVVY (Survival Analysis for AdVerse Events with VarYing Follow-Up Times) project is a consortium of academic and pharmaceutical industry partners that aims to improve the analyses of adverse event (AE) data in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events, see Stegherr, Schmoor, Beyersmann, et al. (2021) <doi:10.1186/s13063-021-05354-x>. Although statistical methodologies have advanced, in AE analyses often the incidence proportion, the incidence density or a non-parametric Kaplan-Meier estimator are used, which either ignore censoring or competing events. This package contains functions to easily conduct the proposed improved AE analyses.
An R API providing access to a relational database with macroeconomic time series data for South Africa, obtained from the South African Reserve Bank (SARB) and Statistics South Africa (STATSSA), and updated on a weekly basis via the EconData <https://www.econdata.co.za/> platform and automated scraping of the SARB and STATSSA websites. The database is maintained at the Department of Economics at Stellenbosch University.
High dimensional survival data analysis with Markov Chain Monte Carlo(MCMC). Currently supports frailty data analysis. Allows for Weibull and Exponential distribution. Includes function for interval censored data.