_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-bartxviz 1.0.11
Propagated dependencies: r-tidyr@1.3.1 r-superlearner@2.0-29 r-stringr@1.6.0 r-reshape2@1.4.5 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-missforest@1.6.1 r-gridextra@2.3 r-ggpubr@0.6.2 r-ggplot2@4.0.1 r-gggenes@0.5.1 r-ggforce@0.5.0 r-ggfittext@0.10.2 r-foreach@1.5.2 r-forcats@1.0.1 r-dplyr@1.1.4 r-dbarts@0.9-32 r-data-table@1.17.8 r-bartmachine@1.4.1.1 r-bart@2.9.10 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/ldongeunl/bartXViz
Licenses: GPL 2+
Build system: r
Synopsis: Visualization of BART and BARP using SHAP
Description:

Complex machine learning models are often difficult to interpret. Shapley values serve as a powerful tool to understand and explain why a model makes a particular prediction. This package computes variable contributions using permutation-based Shapley values for Bayesian Additive Regression Trees (BART) and its extension with Post-Stratification (BARP). The permutation-based SHAP method proposed by Strumbel and Kononenko (2014) <doi:10.1007/s10115-013-0679-x> is grounded in data obtained via MCMC sampling. Similar to the BART model introduced by Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>, this package leverages Bayesian posterior samples generated during model estimation, allowing variable contributions to be computed without requiring additional sampling. The BART model is designed to work with the following R packages: BART <doi:10.18637/jss.v097.i01>, bartMachine <doi:10.18637/jss.v070.i04>, and dbarts <https://CRAN.R-project.org/package=dbarts>. For XGBoost and baseline adjustments, the approach by Lundberg et al. (2020) <doi:10.1038/s42256-019-0138-9> is also considered. The BARP model proposed by Bisbee (2019) <doi:10.1017/S0003055419000480> was implemented with reference to <https://github.com/jbisbee1/BARP> and is designed to work with modified functions based on that implementation. BARP extends post-stratification by computing variable contributions within each stratum defined by stratifying variables. The resulting Shapley values are visualized through both global and local explanation methods.

r-brpl 1.0.2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BRPL
Licenses: Expat
Build system: r
Synopsis: Methods for Bivariate Poverty Line Calculations
Description:

This package provides tools for identifying subgroups within populations based on individual response patterns to specific interventions or treatments. Designed to support researchers and clinicians in exploring heterogeneous treatment effects and developing personalized therapeutic strategies. Offers functionality for analyzing and visualizing the interplay between two variables, thereby enhancing the interpretation of social sustainability metrics. The package focuses on bivariate discriminant analysis and aims to clarify relationships between indicator variables.

r-bayessurv 3.8
Propagated dependencies: r-survival@3.8-3 r-smoothsurv@2.6 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://msekce.karlin.mff.cuni.cz/~komarek/
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Survival Regression with Flexible Error and Random Effects Distributions
Description:

This package contains Bayesian implementations of the Mixed-Effects Accelerated Failure Time (MEAFT) models for censored data. Those can be not only right-censored but also interval-censored, doubly-interval-censored or misclassified interval-censored. The methods implemented in the package have been published in Komárek and Lesaffre (2006, Stat. Modelling) <doi:10.1191/1471082X06st107oa>, Komárek, Lesaffre and Legrand (2007, Stat. in Medicine) <doi:10.1002/sim.3083>, Komárek and Lesaffre (2007, Stat. Sinica) <https://www3.stat.sinica.edu.tw/statistica/oldpdf/A17n27.pdf>, Komárek and Lesaffre (2008, JASA) <doi:10.1198/016214507000000563>, Garcà a-Zattera, Jara and Komárek (2016, Biometrics) <doi:10.1111/biom.12424>.

r-brl 0.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/msadinle/BRL
Licenses: GPL 3
Build system: r
Synopsis: Beta Record Linkage
Description:

Implementation of the record linkage methodology proposed by Sadinle (2017) <doi:10.1080/01621459.2016.1148612>. It handles the bipartite record linkage problem, where two duplicate-free datafiles are to be merged.

r-blockedff 0.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=blockedFF
Licenses: GPL 3
Build system: r
Synopsis: Generation of Blocked Fractional Factorial Designs (Two-Level and Three-Level)
Description:

This package provides computational tools to generate efficient blocked and unblocked fractional factorial designs for two-level and three-level factors using the generalized Minimum Aberration (MA) criterion and related optimization algorithms. Methodological foundations include the general theory of minimum aberration as described by Cheng and Tang (2005) <doi:10.1214/009053604000001228>, and the catalogue of three-level regular fractional factorial designs developed by Xu (2005) <doi:10.1007/s00184-005-0408-x>. The main functions dol2() and dol3() generate blocked two-level and three-level fractional factorial designs, respectively, using beam search, optimization-based ranking, confounding assessment, and structured output suitable for complete factorial situations.

r-beam 2.0.4
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-matrix@1.7-4 r-knitr@1.50 r-igraph@2.2.1 r-fdrtool@1.2.18 r-bh@1.87.0-1 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/gleday/beam
Licenses: GPL 2+
Build system: r
Synopsis: Fast Bayesian Inference in Large Gaussian Graphical Models
Description:

Fast Bayesian inference of marginal and conditional independence structures from high-dimensional data. Leday and Richardson (2019), Biometrics, <doi:10.1111/biom.13064>.

r-batchgetsymbols 2.6.4
Propagated dependencies: r-zoo@1.8-14 r-xml@3.99-0.20 r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-scales@1.4.0 r-rvest@1.0.5 r-quantmod@0.4.28 r-purrr@1.2.0 r-lubridate@1.9.4 r-lifecycle@1.0.4 r-future@1.68.0 r-furrr@0.3.1 r-dplyr@1.1.4 r-curl@7.0.0 r-crayon@1.5.3 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BatchGetSymbols
Licenses: GPL 2
Build system: r
Synopsis: Downloads and Organizes Financial Data for Multiple Tickers
Description:

Makes it easy to download financial data from Yahoo Finance <https://finance.yahoo.com/>.

r-bwgs 0.2.1
Propagated dependencies: r-stringi@1.8.7 r-rrblup@4.6.3 r-randomforest@4.7-1.2 r-glmnet@4.1-10 r-e1071@1.7-16 r-brnn@0.9.4 r-bglr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/byzheng/BWGS
Licenses: GPL 2+
Build system: r
Synopsis: BreedWheat Genomic Selection Pipeline
Description:

Package for Breed Wheat Genomic Selection Pipeline. The R package BWGS is developed by Louis Gautier Tran <louis.gautier.tran@gmail.com> and Gilles Charmet <gilles.charmet@inra.fr>. This repository is forked from original repository <https://forgemia.inra.fr/umr-gdec/bwgs> and modified as a R package.

r-btml 0.2.0
Propagated dependencies: r-randomforest@4.7-1.2 r-proc@1.19.0.1 r-glmnet@4.1-10 r-e1071@1.7-16
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=btml
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Treed Machine Learning for Personalized Prediction
Description:

Generalization of the Bayesian classification and regression tree (CART) model that partitions subjects into terminal nodes and tailors machine learning model to each terminal node.

r-braincon 0.3.0
Propagated dependencies: r-mass@7.3-65 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BrainCon
Licenses: GPL 2+
Build system: r
Synopsis: Inference the Partial Correlations Based on Time Series Data
Description:

This package provides a statistical tool to inference the multi-level partial correlations based on multi-subject time series data, especially for brain functional connectivity. It combines both individual and population level inference by using the methods of Qiu and Zhou. (2021)<DOI: 10.1080/01621459.2021.1917417> and Genovese and Wasserman. (2006)<DOI: 10.1198/016214506000000339>. It realizes two reliable estimation methods of partial correlation coefficients, using scaled lasso and lasso. It can be used to estimate individual- or population-level partial correlations, identify nonzero ones, and find out unequal partial correlation coefficients between two populations.

r-bayeslist 0.0.1.6
Propagated dependencies: r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-ggplot2@4.0.1 r-formula@1.2-5 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bayeslist
Licenses: Expat
Build system: r
Synopsis: Bayesian Analysis of List Experiments with Prior Information
Description:

Estimates Bayesian models of list experiments with informative priors. It includes functionalities to estimate different types of list experiment models with varying prior information. See Lu and Traunmüller (2026) <doi:10.1017/psrm.2025.10084> for examples and details of estimation.

r-bamboohr 0.1.1
Propagated dependencies: r-withr@3.0.2 r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-rlang@1.1.6 r-purrr@1.2.0 r-magrittr@2.0.4 r-lubridate@1.9.4 r-jsonlite@2.0.0 r-janitor@2.2.1 r-httr@1.4.7 r-glue@1.8.0 r-dplyr@1.1.4 r-curl@7.0.0 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://mangothecat.github.io/bambooHR/
Licenses: Expat
Build system: r
Synopsis: Wrapper to the 'BambooHR' API
Description:

Enables a user to consume the BambooHR API endpoints using R. The actual URL of the API will depend on your company domain, and will be handled by the package automatically once you setup the config file. The API documentation can be found here <https://documentation.bamboohr.com/docs>.

r-bayesianglasso 0.2.0
Propagated dependencies: r-statmod@1.5.1 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesianGLasso
Licenses: GPL 3
Build system: r
Synopsis: Bayesian Graphical Lasso
Description:

This package implements a data-augmented block Gibbs sampler for simulating the posterior distribution of concentration matrices for specifying the topology and parameterization of a Gaussian Graphical Model (GGM). This sampler was originally proposed in Wang (2012) <doi:10.1214/12-BA729>.

r-bayessim 1.0.1
Propagated dependencies: r-tidyr@1.3.1 r-patchwork@1.3.2 r-nimble@1.4.0 r-mvtnorm@1.3-3 r-mass@7.3-65 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesSIM
Licenses: GPL 2+
Build system: r
Synopsis: Integrated Interface of Bayesian Single Index Models using 'nimble'
Description:

This package provides tools for fitting Bayesian single index models with flexible choices of priors for both the index and the link function. The package implements model estimation and posterior inference using efficient MCMC algorithms built on the nimble framework, allowing users to specify, extend, and simulate models in a unified and reproducible manner. The following methods are implemented in the package: Antoniadis et al. (2004) <https://www.jstor.org/stable/24307224>, Wang (2009) <doi:10.1016/j.csda.2008.12.010>, Choi et al. (2011) <doi:10.1080/10485251003768019>, Dhara et al. (2019) <doi:10.1214/19-BA1170>, McGee et al. (2023) <doi:10.1111/biom.13569>.

r-baseballr 1.6.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-rvest@1.0.5 r-rlang@1.1.6 r-rcppparallel@5.1.11-1 r-rcpp@1.1.0 r-purrr@1.2.0 r-magrittr@2.0.4 r-lubridate@1.9.4 r-jsonlite@2.0.0 r-janitor@2.2.1 r-httr@1.4.7 r-glue@1.8.0 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-data-table@1.17.8 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://billpetti.github.io/baseballr/
Licenses: Expat
Build system: r
Synopsis: Acquiring and Analyzing Baseball Data
Description:

This package provides numerous utilities for acquiring and analyzing baseball data from online sources such as Baseball Reference <https://www.baseball-reference.com/>, FanGraphs <https://www.fangraphs.com/>, and the MLB Stats API <https://www.mlb.com/>.

r-bartmachinejars 1.2.2
Dependencies: openjdk@25
Propagated dependencies: r-rjava@1.0-11
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bartMachineJARs
Licenses: GPL 3
Build system: r
Synopsis: bartMachine JARs
Description:

These are bartMachine's Java dependency libraries. Note: this package has no functionality of its own and should not be installed as a standalone package without bartMachine.

r-biocompute 1.1.1
Propagated dependencies: r-yaml@2.3.10 r-uuid@1.2-1 r-stringr@1.6.0 r-rmarkdown@2.30 r-magrittr@2.0.4 r-jsonvalidate@1.5.0 r-jsonlite@2.0.0 r-httr@1.4.7 r-digest@0.6.39 r-curl@7.0.0 r-crayon@1.5.3 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://sbg.github.io/biocompute/
Licenses: AGPL 3
Build system: r
Synopsis: Create and Manipulate BioCompute Objects
Description:

This package provides tools to create, validate, and export BioCompute Objects described in King et al. (2019) <doi:10.17605/osf.io/h59uh>. Users can encode information in data frames, and compose BioCompute Objects from the domains defined by the standard. A checksum validator and a JSON schema validator are provided. This package also supports exporting BioCompute Objects as JSON, PDF, HTML, or Word documents, and exporting to cloud-based platforms.

r-bayesfluxr 0.1.3
Propagated dependencies: r-juliacall@0.17.6
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesFluxR
Licenses: Expat
Build system: r
Synopsis: Implementation of Bayesian Neural Networks
Description:

Implementation of BayesFlux.jl for R; It extends the famous Flux.jl machine learning library to Bayesian Neural Networks. The goal is not to have the fastest production ready library, but rather to allow more people to be able to use and research on Bayesian Neural Networks.

r-bratteli 1.0.0
Propagated dependencies: r-kantorovich@3.2.0 r-gmp@0.7-5 r-diagram@1.6.5 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/stla/bratteliR
Licenses: GPL 3
Build system: r
Synopsis: Deal with Bratteli Graphs
Description:

Utilities for Bratteli graphs. A tree is an example of a Bratteli graph. The package provides a function which generates a LaTeX file that renders the given Bratteli graph. It also provides functions to compute the dimensions of the vertices, the intrinsic kernels and the intrinsic distances. Intrinsic kernels and distances were introduced by Vershik (2014) <doi:10.1007/s10958-014-1958-0>.

r-boltzmm 0.1.5
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BoltzMM
Licenses: GPL 3
Build system: r
Synopsis: Boltzmann Machines with MM Algorithms
Description:

This package provides probability computation, data generation, and model estimation for fully-visible Boltzmann machines. It follows the methods described in Nguyen and Wood (2016a) <doi:10.1162/NECO_a_00813> and Nguyen and Wood (2016b) <doi:10.1109/TNNLS.2015.2425898>.

r-bnpsd 1.3.13
Propagated dependencies: r-nnls@1.6 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/StoreyLab/bnpsd/
Licenses: GPL 3+
Build system: r
Synopsis: Simulate Genotypes from the BN-PSD Admixture Model
Description:

The Pritchard-Stephens-Donnelly (PSD) admixture model has k intermediate subpopulations from which n individuals draw their alleles dictated by their individual-specific admixture proportions. The BN-PSD model additionally imposes the Balding-Nichols (BN) allele frequency model to the intermediate populations, which therefore evolved independently from a common ancestral population T with subpopulation-specific FST (Wright's fixation index) parameters. The BN-PSD model can be used to yield complex population structures. This simulation approach is now extended to subpopulations related by a tree. Method described in Ochoa and Storey (2021) <doi:10.1371/journal.pgen.1009241>.

r-balancedsampling 2.1.1
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://www.envisim.se/
Licenses: AGPL 3
Build system: r
Synopsis: Balanced and Spatially Balanced Sampling
Description:

Select balanced and spatially balanced probability samples in multi-dimensional spaces with any prescribed inclusion probabilities. It contains fast (C++ via Rcpp) implementations of the included sampling methods. The local pivotal method by Grafström, Lundström and Schelin (2012) <doi:10.1111/j.1541-0420.2011.01699.x> and spatially correlated Poisson sampling by Grafström (2012) <doi:10.1016/j.jspi.2011.07.003> are included. Also the cube method (for balanced sampling) and the local cube method (for doubly balanced sampling) are included, see Grafström and Tillé (2013) <doi:10.1002/env.2194>.

r-bsw 0.1.2
Propagated dependencies: r-quadprog@1.5-8 r-matrixstats@1.5.0 r-matrix@1.7-4 r-checkmate@2.3.3 r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/UdS-MF-IMBEI/BSW
Licenses: GPL 3+
Build system: r
Synopsis: Fitting a Log-Binomial Model Using the Bekhit–Schöpe–Wagenpfeil (BSW) Algorithm
Description:

This package implements a modified Newton-type algorithm (BSW algorithm) for solving the maximum likelihood estimation problem in fitting a log-binomial model under linear inequality constraints.

r-bayesdip 0.1.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: <https://github.com/chenw10/BayesDIP>
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Decreasingly Informative Priors for Early Termination Phase II Trials
Description:

Provide early termination phase II trial designs with a decreasingly informative prior (DIP) or a regular Bayesian prior chosen by the user. The program can determine the minimum planned sample size necessary to achieve the user-specified admissible designs. The program can also perform power and expected sample size calculations for the tests in early termination Phase II trials. See Wang C and Sabo RT (2022) <doi:10.18203/2349-3259.ijct20221110>; Sabo RT (2014) <doi:10.1080/10543406.2014.888441>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283