Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
It provides generic methods that are used by more than one package, avoiding conflicts. This package will be imported by tidySingleCellExperiment and tidyseurat'.
This package provides methods and tools for generating forecasts at different temporal frequencies using a hierarchical time series approach.
This package provides an easy-to-use tind class representing time indices of different types (years, quarters, months, ISO 8601 weeks, dates, time of day, date-time, and arbitrary integer/numeric indices). Includes an extensive collection of functions for calendrical computations (including business applications), index conversions, index parsing, and other operations. Auxiliary classes representing time differences and time intervals (with set operations and index matching functionality) are also provided. All routines have been optimised for speed in order to facilitate computations on large datasets. More details regarding calendars in general and calendrical algorithms can be found in "Calendar FAQ" by Claus Tøndering <https://www.tondering.dk/claus/calendar.html>.
Forecasting of long memory time series in presence of structural break by using TSF algorithm by Papailias and Dias (2015) <doi:10.1016/j.ijforecast.2015.01.006>.
This package provides users a quick exploratory dive into common visualizations without writing a single line of code given the users data follows the Analysis Data Model (ADaM) standards put forth by the Clinical Data Interchange Standards Consortium (CDISC) <https://www.cdisc.org>. Prominent modules/ features of the application are the Table Generator, Population Explorer, and the Individual Explorer. The Table Generator allows users to drag and drop variables and desired statistics (frequencies, means, ANOVA, t-test, and other summary statistics) into bins that automagically create stunning tables with validated information. The Population Explorer offers various plots to visualize general trends in the population from various vantage points. Plot modules currently include scatter plot, spaghetti plot, box plot, histogram, means plot, and bar plot. Each plot type allows the user to plot uploaded variables against one another, and dissect the population by filtering out certain subjects. Last, the Individual Explorer establishes a cohesive patient narrative, allowing the user to interact with patient metrics (params) by visit or plotting important patient events on a timeline. All modules allow for concise filtering & downloading bulk outputs into html or pdf formats to save for later.
Fit a threshold regression model for Interval Censored Data based on the first-hitting-time of a boundary by the sample path of a Wiener diffusion process. The threshold regression methodology is well suited to applications involving survival and time-to-event data.
Inferring causation from time series data through empirical dynamic modeling (EDM), with methods such as convergent cross mapping from Sugihara et al. (2012) <doi:10.1126/science.1227079>, partial cross mapping as outlined in Leng et al. (2020) <doi:10.1038/s41467-020-16238-0>, and cross mapping cardinality as described in Tao et al. (2023) <doi:10.1016/j.fmre.2023.01.007>.
Schedule R scripts/processes with the Windows task scheduler. This allows R users to automate R processes on specific time points from R itself.
Collection of phylogenetic tree statistics, collected throughout the literature. All functions have been written to maximize computation speed. The package includes umbrella functions to calculate all statistics, all balance associated statistics, or all branching time related statistics. Furthermore, the treestats package supports summary statistic calculations on Ltables, provides speed-improved coding of branching times, Ltable conversion and includes algorithms to create intermediately balanced trees. Full description can be found in Janzen (2024) <doi:10.1016/j.ympev.2024.108168>.
This package provides a user-friendly R data package that is intended to make Turkish higher education statistics more accessible.
This package provides functions to combine data.frames in ways that require additional effort in base R, and to add metadata (id, title, ...) that can be used for printing and xlsx export. The Tatoo_report class is provided as a convenient helper to write several such tables to a workbook, one table per worksheet. Tatoo is built on top of openxlsx', but intimate knowledge of that package is not required to use tatoo.
Access open data from <https://www.threesixtygiving.org>, a database of charitable grant giving in the UK operated by 360Giving'. The package provides functions to search and retrieve data on charitable grant giving, and process that data into tidy formats. It relies on the 360Giving data standard, described at <https://standard.threesixtygiving.org/>.
This package implements a probabilistic ensemble time-series forecaster that combines an auto-encoder with a neural decision forest whose split variables are learned through a differentiable feature-mask layer. Functions are written with torch tensors and provide CRPS (Continuous Ranked Probability Scores) training plus mixture-distribution post-processing.
Accurately estimates phase shifts by accounting for period changes and for the point in the circadian cycle at which the stimulus occurs. See Tackenberg et al. (2018) <doi:10.1177/0748730418768116>.
Component analysis for three-way data arrays by means of Candecomp/Parafac, Tucker3, Tucker2 and Tucker1 models.
C source code and R wrappers for the tth/ttm TeX-to-HTML/MathML translators.
Fit two-part regression models for zero-inflated data. The models and their components are represented using S4 classes and methods. Average Marginal effects and predictive margins with standard errors and confidence intervals can be calculated from two-part model objects. Belotti, F., Deb, P., Manning, W. G., & Norton, E. C. (2015) <doi:10.1177/1536867X1501500102>.
The main goal of the R package treeDbalance is to provide functions for the computation of several measurements of 3D node imbalance and their respective 3D tree imbalance indices, as well as to introduce the new phylo3D format for rooted 3D tree objects. Moreover, it encompasses an example dataset of 3D models of 63 beans in phylo3D format. Please note that this R package was developed alongside the project described in the manuscript Measuring 3D tree imbalance of plant models using graph-theoretical approaches by M. Fischer, S. Kersting, and L. Kühn (2023) <arXiv:2307.14537>, which provides precise mathematical definitions of the measurements. Furthermore, the package contains several helpful functions, for example, some auxiliary functions for computing the ancestors, descendants, and depths of the nodes, which ensures that the computations can be done in linear time. Most functions of treeDbalance require as input a rooted tree in the phylo3D format, an extended phylo format (as introduced in the R package ape 1.9 in November 2006). Such a phylo3D object must have at least two new attributes next to those required by the phylo format: node.coord', the coordinates of the nodes, as well as edge.weight', the literal weight or volume of the edges. Optional attributes are edge.diam', the diameter of the edges, and edge.length', the length of the edges. For visualization purposes one can also specify edge.type', which ranges from normal cylinder to bud to leaf, as well as edge.color to change the color of the edge depiction. This project was supported by the joint research project DIG-IT! funded by the European Social Fund (ESF), reference: ESF/14-BM-A55-0017/19, and the Ministry of Education, Science and Culture of Mecklenburg-Western Pomerania, Germany, as well as by the the project ArtIGROW, which is a part of the WIR!-Alliance ArtIFARM â Artificial Intelligence in Farming funded by the German Federal Ministry of Education and Research (FKZ: 03WIR4805).
Uses the optimal test design approach by Birnbaum (1968, ISBN:9781593119348) and van der Linden (2018) <doi:10.1201/9781315117430> to construct fixed, adaptive, and parallel tests. Supports the following mixed-integer programming (MIP) solver packages: Rsymphony', highs', gurobi', lpSolve', and Rglpk'. The gurobi package is not available from CRAN; see <https://www.gurobi.com/downloads/>.
An integrated R interface to several United States Census Bureau APIs (<https://www.census.gov/data/developers/data-sets.html>) and the US Census Bureau's geographic boundary files. Allows R users to return Census and ACS data as tidyverse-ready data frames, and optionally returns a list-column with feature geometry for mapping and spatial analysis.
Consolidates and calculates different sets of time-series features from multiple R and Python packages including Rcatch22 Henderson, T. (2021) <doi:10.5281/zenodo.5546815>, feasts O'Hara-Wild, M., Hyndman, R., and Wang, E. (2021) <https://CRAN.R-project.org/package=feasts>, tsfeatures Hyndman, R., Kang, Y., Montero-Manso, P., Talagala, T., Wang, E., Yang, Y., and O'Hara-Wild, M. (2020) <https://CRAN.R-project.org/package=tsfeatures>, tsfresh Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr A.W. (2018) <doi:10.1016/j.neucom.2018.03.067>, TSFEL Barandas, M., et al. (2020) <doi:10.1016/j.softx.2020.100456>, and Kats Facebook Infrastructure Data Science (2021) <https://facebookresearch.github.io/Kats/>.
Interface to the API for TreeBASE <http://treebase.org> from R. TreeBASE is a repository of user-submitted phylogenetic trees (of species, population, or genes) and the data used to create them.
This package provides functions to find all matches or non-matches, orphans, and duplicate or other replicated elements.
This package provides a toolset that allows you to easily import and tidy data sheets retrieved from Gapminder data web tools. It will therefore contribute to reduce the time used in data cleaning of Gapminder indicator data sheets as they are very messy.