Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements Bayesian methods, described in Hugh-Jones (2019) <doi:10.1007/s40881-019-00069-x>, for estimating the proportion of liars in coin flip-style experiments, where subjects report a random outcome and are paid for reporting a "good" outcome.
Themes for ggplot2 are a convenient way to style plots. The hrbrthemes package contains a particularly nice one, but brings along a significant tail of dependencies. So this (currently experimental) package brings along just the theme_ipsum_rc theme using the Roboto Condensed font. Should the font not be installed on your system, see the help in the package hrbrthemes on how to install Roboto Condensed'. Note that hrbrthemes is now archived at CRAN.
Node centrality measures for temporal networks. Available measures are temporal degree centrality, temporal closeness centrality and temporal betweenness centrality defined by Kim and Anderson (2012) <doi:10.1103/PhysRevE.85.026107>. Applying the REN algorithm by Hanke and Foraita (2017) <doi:10.1186/s12859-017-1677-x> when calculating the centrality measures keeps the computational running time linear in the number of graph snapshots. Further, all methods can run in parallel up to the number of nodes in the network.
Palettes generated from Tintin covers. There is one palette per cover, with a total of 24 palettes of 5 colours each. Includes functions to interpolate colors in order to create more colors based on the provided palettes.The data is based on Cyr, et al. (2004) <doi:10.1503/cmaj.1041405> and Wikipedia <https://en.wikipedia.org/wiki/The_Adventures_of_Tintin>.
The LSTM (Long Short-Term Memory) model is a Recurrent Neural Network (RNN) based architecture that is widely used for time series forecasting. Min-Max transformation has been used for data preparation. Here, we have used one LSTM layer as a simple LSTM model and a Dense layer is used as the output layer. Then, compile the model using the loss function, optimizer and metrics. This package is based on Keras and TensorFlow modules and the algorithm of Paul and Garai (2021) <doi:10.1007/s00500-021-06087-4>.
Tuning random forest with one line. The package is mainly based on the packages ranger and mlrMBO'.
This package provides a robust computational framework for analyzing complex multimodal data. Extends existing state-dependent models to account for diverse data streams, addressing challenges such as varying temporal scales and learner characteristics to improve the robustness and interpretability of findings. For methodological details, see Shaffer, Wang, and Ruis (2025) "Transmodal Analysis" <doi:10.18608/jla.2025.8423>.
Utility functions and RStudio addins for writing, running and organizing automated tests. Integrates tightly with the packages testthat', devtools and usethis'. Hotkeys can be assigned to the RStudio addins for running tests in a single file or to switch between a source file and the associated test file. In addition, testthis provides function to manage and run tests in subdirectories of the test/testthat directory.
Cluster analysis is one of the most fundamental problems in data science. We provide a variety of algorithms from clustering to the learning on the space of partitions. See Hennig, Meila, and Rocci (2016, ISBN:9781466551886) for general exposition to cluster analysis.
This package provides a dataset of predefined color palettes based on the Star Trek science fiction series, associated color palette functions, and additional functions for generating customized palettes that are on theme. The package also offers functions for applying the palettes to plots made using the ggplot2 package.
Archive and manage times series data from official statistics. The timeseriesdb package was designed to manage a large catalog of time series from official statistics which are typically published on a monthly, quarterly or yearly basis. Thus timeseriesdb is optimized to handle updates caused by data revision as well as elaborate, multi-lingual meta information.
Several datasets which describe the chef contestants in Top Chef, the challenges that they compete in, and the results of those challenges. This data is useful for practicing data wrangling, graphing, and analyzing how each season of Top Chef played out.
The goal of tidyplots is to streamline the creation of publication-ready plots for scientific papers. It allows to gradually add, remove and adjust plot components using a consistent and intuitive syntax.
Allows users to quickly load multiple patients electrocardiographic (ECG) data at once and conduct relevant time analysis of heart rate variability (HRV) without manual edits from a physician or data cleaning specialist. The package provides the unique ability to iteratively filter, plot, and store time analysis results in a data frame while writing plots to a predefined folder. This streamlines the workflow for HRV analysis across multiple datasets. Methods are based on Rodrà guez-Liñares et al. (2011) <doi:10.1016/j.cmpb.2010.05.012>. Examples of applications using this package include Kwon et al. (2022) <doi:10.1007/s10286-022-00865-2> and Lawrence et al. (2023) <doi:10.1016/j.autneu.2022.103056>.
This package provides a clinically meaningful measures of treatment effects for right-censored data are provided, based on the concept of Kendall's tau, along with the corresponding inference procedures. Two plots of tau processes, with the option to account for the cure fraction or not, are available. The plots of tau processes serve as useful graphical tools for monitoring the relative performances over time.
Accompanies the texts Time Series for Data Science with R by Woodward, Sadler and Robertson & Applied Time Series Analysis with R, 2nd edition by Woodward, Gray, and Elliott. It is helpful for data analysis and for time series instruction.
Implementation of a Bayesian two-way latent structure model for integrative genomic clustering. The model clusters samples in relation to distinct data sources, with each subject-dataset receiving a latent cluster label, though cluster labels have across-dataset meaning because of the model formulation. A common scaling across data sources is unneeded, and inference is obtained by a Gibbs Sampler. The model can fit multivariate Gaussian distributed clusters or a heavier-tailed modification of a Gaussian density. Uniquely among integrative clustering models, the formulation makes no nestedness assumptions of samples across data sources -- the user can still fit the model if a study subject only has information from one data source. The package provides a variety of post-processing functions for model examination including ones for quantifying observed alignment of clusterings across genomic data sources. Run time is optimized so that analyses of datasets on the order of thousands of features on fewer than 5 datasets and hundreds of subjects can converge in 1 or 2 days on a single CPU. See "Swanson DM, Lien T, Bergholtz H, Sorlie T, Frigessi A, Investigating Coordinated Architectures Across Clusters in Integrative Studies: a Bayesian Two-Way Latent Structure Model, 2018, <doi:10.1101/387076>, Cold Spring Harbor Laboratory" at <https://www.biorxiv.org/content/early/2018/08/07/387076.full.pdf> for model details.
Fit a trio model via penalized maximum likelihood. The model is fit for a path of values of the penalty parameter. This package is based on Noah Simon, et al. (2011) <doi:10.1080/10618600.2012.681250>.
Estimation of models for truncated Gaussian variables by maximum likelihood.
This package provides bindings to Tree-sitter', an incremental parsing system for programming tools. Tree-sitter builds concrete syntax trees for source files of any language, and can efficiently update those syntax trees as the source file is edited. It also includes a robust error recovery system that provides useful parse results even in the presence of syntax errors.
This package provides a graphics output device for R that records plots in a LaTeX-friendly format. The device transforms plotting commands issued by R functions into LaTeX code blocks. When included in a LaTeX document, these blocks are interpreted with the help of TikZ'---a graphics package for TeX and friends written by Till Tantau. Using the tikzDevice', the text of R plots can contain LaTeX commands such as mathematical formula. The device also allows arbitrary LaTeX code to be inserted into the output stream.
An interface to the mclust package to easily carry out latent profile analysis ("LPA"). Provides functionality to estimate commonly-specified models. Follows a tidy approach, in that output is in the form of a data frame that can subsequently be computed on. Also has functions to interface to the commercial MPlus software via the MplusAutomation package.
Cluster data without specifying the number of clusters using the Table Invitation Prior (TIP) introduced in the paper "Clustering Gene Expression Using the Table Invitation Prior" by Charles W. Harrison, Qing He, and Hsin-Hsiung Huang (2022) <doi:10.3390/genes13112036>. TIP is a Bayesian prior that uses pairwise distance and similarity information to cluster vectors, matrices, or tensors.
This package provides tools for Topological Data Analysis. The package focuses on statistical analysis of persistent homology and density clustering. For that, this package provides an R interface for the efficient algorithms of the C++ libraries GUDHI <https://project.inria.fr/gudhi/software/>, Dionysus <https://www.mrzv.org/software/dionysus/>, and PHAT <https://bitbucket.org/phat-code/phat/>. This package also implements methods from Fasy et al. (2014) <doi:10.1214/14-AOS1252> and Chazal et al. (2015) <doi:10.20382/jocg.v6i2a8> for analyzing the statistical significance of persistent homology features.