Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Measure text's sentiment with dictionaries and simple rules covering negations and modifiers. User-supplied dictionaries are supported, including Unicode emojis and multi-word tokens, so this package can also be used to study constructs beyond sentiment.
The LSTM (Long Short-Term Memory) model is a Recurrent Neural Network (RNN) based architecture that is widely used for time series forecasting. Min-Max transformation has been used for data preparation. Here, we have used one LSTM layer as a simple LSTM model and a Dense layer is used as the output layer. Then, compile the model using the loss function, optimizer and metrics. This package is based on Keras and TensorFlow modules and the algorithm of Paul and Garai (2021) <doi:10.1007/s00500-021-06087-4>.
Carries out analyses of two-way tables with one observation per cell, together with graphical displays for an additive fit and a diagnostic plot for removable non-additivity via a power transformation of the response. It implements Tukey's Exploratory Data Analysis (1973) <ISBN: 978-0201076165> methods, including a 1-degree-of-freedom test for row*column non-additivity', linear in the row and column effects.
Better looking call stacks after an error.
High-performance parsing of Tableau workbook files into tidy data frames and dependency graphs for other visualization tools like R Shiny or Power BI replication.
Create "good enough" tables with a single formula. tablespan tables can be exported to Excel', HTML', LaTeX', and RTF by leveraging the packages openxlsx and gt'. See <https://jhorzek.github.io/tablespan/> for an introduction.
This package provides functions for compounding and discounting calculations included here serve as a complete reference for various scenarios of time value of money. Raymond M. Brooks (â Financial Management,â 2018, ISBN: 9780134730417). Sheridan Titman, Arthur J. Keown, John D. Martin (â Financial Management: Principles and Applications,â 2017, ISBN: 9780134417219). Jonathan Berk, Peter DeMarzo, David Stangeland, Andras Marosi (â Fundamentals of Corporate Finance,â 2019, ISBN: 9780134735313). S. A. Hummelbrunner, Kelly Halliday, Ali R. Hassanlou (â Contemporary Business Mathematics with Canadian Applications,â 2020, ISBN: 9780135285015).
This package provides tools for simulating and modeling traffic flow on road networks using spatial conditional autoregressive (CAR) models. The package represents road systems as graphs derived from OpenStreetMap data <https://www.openstreetmap.org/> and supports network-based spatial dependence, basic preprocessing, and visualization for spatial traffic analysis.
Parse XML documents from the Open Access subset of Europe PubMed Central <https://europepmc.org> including section paragraphs, tables, captions and references.
Each sequence is predicted by expanding the distance matrix. The compact set of hyper-parameters is tuned through random search.
Enables users to build ToxPi prioritization models and provides functionality within the grid framework for plotting ToxPi graphs. toxpiR allows for more customization than the ToxPi GUI (<https://toxpi.github.io/>) and integration into existing workflows for greater ease-of-use, reproducibility, and transparency. toxpiR package behaves nearly identically to the GUI; the package documentation includes notes about all differences. The vignettes download example files from <https://github.com/ToxPi/ToxPi-example-files>.
Tide analysis and prediction of predominantly semi-diurnal tides with two high waters and two low waters during one lunar day (~24.842 hours, ~1.035 days). The analysis should preferably cover an observation period of at least 19 years. For shorter periods, for example, the nodal cycle can not be taken into account, which particularly affects the height calculation. The main objective of this package is to produce tide tables.
This package performs Three-Mode Principal Components Analysis, which carries out Tucker Models.
Access and manipulate spatial tracking data, with straightforward coercion from and to other formats. Filter for speed and create time spent maps from tracking data. There are coercion methods to convert between trip and ltraj from adehabitatLT', and between trip and psp and ppp from spatstat'. Trip objects can be created from raw or grouped data frames, and from types in the sp', sf', amt', trackeR', mousetrap', and other packages, Sumner, MD (2011) <https://figshare.utas.edu.au/articles/thesis/The_tag_location_problem/23209538>.
Helper functions for processing REDCap data in R. REDCap is a web-enabled application for building and managing surveys and databases developed at Vanderbilt University.
Miscellaneous utility functions for data manipulation, data tidying, and working with gene expression data.
This package creates some tables of clinical study. Table 1 is created by table1() to describe baseline characteristics, which is essential in every clinical study. Created by table2(), the function of Table 2 is to explore influence factors. And Table 3 created by table3() is able to make stratified analysis.
This package creates interpretable decision tree visualizations with the data represented as a heatmap at the tree's leaf nodes. treeheatr utilizes the customizable ggparty package for drawing decision trees.
Testing for trajectory presence and heterogeneity on multivariate data. Two statistical methods (Tenha & Song 2022) <doi:10.1371/journal.pcbi.1009829> are implemented. The tree dimension test quantifies the statistical evidence for trajectory presence. The subset specificity measure summarizes pattern heterogeneity using the minimum subtree cover. There is no user tunable parameters for either method. Examples are included to illustrate how to use the methods on single-cell data for studying gene and pathway expression dynamics and pathway expression specificity.
This package provides functions for analyzing citizens bicycle usage pattern and predicting rental amount on specific conditions. Functions on this package interacts with data on tashudata package, a drat repository. tashudata package contains rental/return history on public bicycle system('Tashu'), weather for 3 years and bicycle station information. To install this data package, see the instructions at <https://github.com/zeee1/Tashu_Rpackage>. top10_stations(), top10_paths() function visualizes image showing the most used top 10 stations and paths. daily_bike_rental() and monthly_bike_rental() shows daily, monthly amount of bicycle rental. create_train_dataset(), create_test_dataset() is data processing function for prediction. Bicycle rental history from 2013 to 2014 is used to create training dataset and that on 2015 is for test dataset. Users can make random-forest prediction model by using create_train_model() and predict amount of bicycle rental in 2015 by using predict_bike_rental().
Topological data analysis studies structure and shape of the data using topological features. We provide a variety of algorithms to learn with persistent homology of the data based on functional summaries for clustering, hypothesis testing, visualization, and others. We refer to Wasserman (2018) <doi:10.1146/annurev-statistics-031017-100045> for a statistical perspective on the topic.
This package implements the approach described in Fong and Grimmer (2016) <https://aclweb.org/anthology/P/P16/P16-1151.pdf> for automatically discovering latent treatments from a corpus and estimating the average marginal component effect (AMCE) of each treatment. The data is divided into a training and test set. The supervised Indian Buffet Process (sibp) is used to discover latent treatments in the training set. The fitted model is then applied to the test set to infer the values of the latent treatments in the test set. Finally, Y is regressed on the latent treatments in the test set to estimate the causal effect of each treatment.
This package provides a hypothesis test and variable selection algorithm for use in time-varying, concurrent regression models. The hypothesis test function is also accompanied by a plotting function which will show the estimated beta(s) and confidence band(s) from the hypothesis test. The hypothesis test function helps the user identify significant covariates within the scope of a time-varying concurrent model. The plots will show the amount of area that falls outside the confidence band(s) which is used for the test statistic within the hypothesis test.
The tcplfit2 R package performs basic concentration-response curve fitting. The original tcplFit() function in the tcpl R package performed basic concentration-response curvefitting to 3 models. With tcplfit2, the core tcpl concentration-response functionality has been expanded to process diverse high-throughput screen (HTS) data generated at the US Environmental Protection Agency, including targeted ToxCast, high-throughput transcriptomics (HTTr) and high-throughput phenotypic profiling (HTPP). tcplfit2 can be used independently to support analysis for diverse chemical screening efforts.