Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extensions to lattice', providing new high-level functions, methods for existing functions, panel functions, and a theme.
This package provides feedback about dplyr and tidyr operations.
This package provides a simple Natural Language Processing (NLP) toolkit focused on search-centric workflows with minimal dependencies. The package offers key features for web scraping, text processing, corpus search, and text embedding generation via the HuggingFace API <https://huggingface.co/docs/api-inference/index>.
Targeted maximum likelihood estimation of point treatment effects (Targeted Maximum Likelihood Learning, The International Journal of Biostatistics, 2(1), 2006. This version automatically estimates the additive treatment effect among the treated (ATT) and among the controls (ATC). The tmle() function calculates the adjusted marginal difference in mean outcome associated with a binary point treatment, for continuous or binary outcomes. Relative risk and odds ratio estimates are also reported for binary outcomes. Missingness in the outcome is allowed, but not in treatment assignment or baseline covariate values. The population mean is calculated when there is missingness, and no variation in the treatment assignment. The tmleMSM() function estimates the parameters of a marginal structural model for a binary point treatment effect. Effect estimation stratified by a binary mediating variable is also available. An ID argument can be used to identify repeated measures. Default settings call SuperLearner to estimate the Q and g portions of the likelihood, unless values or a user-supplied regression function are passed in as arguments.
An easy tool for plotting annotated timelines, grouped timelines, and exploratory graphics (boxplot/histogram/density plot/scatter plot/line plot). Filter, summarize date data by duration and convert to calendar units.
This package provides tools to download data series from Banco de España ('BdE') on tibble format. Banco de España is the national central bank and, within the framework of the Single Supervisory Mechanism ('SSM'), the supervisor of the Spanish banking system along with the European Central Bank. This package is in no way sponsored endorsed or administered by Banco de España'.
Flexible and ergonomic topological sorting implementation for R. Supports a variety of input data encoding (lists of edges or adjacency matrices, graphs edge direction), stable sort variants as well as cycle detection with detailed diagnosis.
This package provides an R-interface to the TMDb API (see TMDb API on <https://developers.themoviedb.org/3/getting-started/introduction>). The Movie Database (TMDb) is a popular user editable database for movies and TV shows (see <https://www.themoviedb.org>).
This package provides a collection of functions to deal with the truncated univariate and multivariate normal and Student distributions, described in Botev (2017) <doi:10.1111/rssb.12162> and Botev and L'Ecuyer (2015) <doi:10.1109/WSC.2015.7408180>.
High-resolution movement-sensor tags typically include accelerometers to measure body posture and sudden movements or changes in speed, magnetometers to measure direction of travel, and pressure sensors to measure dive depth in aquatic or marine animals. The sensors in these tags usually sample many times per second. Some tags include sensors for speed, turning rate (gyroscopes), and sound. This package provides software tools to facilitate calibration, processing, and analysis of such data. Tools are provided for: data import/export; calibration (from raw data to calibrated data in scientific units); visualization (for example, multi-panel time-series plots); data processing (such as event detection, calculation of derived metrics like jerk and dynamic acceleration, dive detection, and dive parameter calculation); and statistical analysis (for example, track reconstruction, a rotation test, and Mahalanobis distance analysis).
This package provides a bioinformatics tool for the estimation of the tumor purity from sequencing data. It uses the set of putative clonal somatic single nucleotide variants within copy number neutral segments to call tumor cellularity.
Fitting models for, and simulation of, trend locally stationary wavelet (TLSW) time series models, which take account of time-varying trend and dependence structure in a univariate time series. The TLSW model, and its estimation, is described in McGonigle, Killick and Nunes (2022a) <doi:10.1111/jtsa.12643>, (2022b) <doi:10.1214/22-EJS2044>. New users will likely want to start with the TLSW function.
Extends the test-based Bayes factor (TBF) methodology to multinomial regression models and discrete time-to-event models with competing risks. The TBF methodology has been well developed and implemented for the generalised linear model [Held et al. (2015) <doi:10.1214/14-STS510>] and for the Cox model [Held et al. (2016) <doi:10.1002/sim.7089>].
Analysis and visualization of data from temporal sensory methods, including for temporal check-all-that-apply (TCATA) and temporal dominance of sensations (TDS). Methods are mainly from manuscripts by Castura, J.C., Antúnez, L., Giménez, A., and Ares, G. (2016) <doi:10.1016/j.foodqual.2015.06.017>, Castura, Baker, and Ross (2016) <doi:10.1016/j.foodqual.2016.06.011>, and Pineau et al. (2009) <doi:10.1016/j.foodqual.2009.04.005>.
Key-value store, implemented as a wrapper around LMDB'; the "lightning memory-mapped database" <https://www.symas.com/mdb>. LMDB is a transactional key value store that uses a memory map for efficient access. This package wraps the entire LMDB interface (except duplicated keys), and provides objects for transactions and cursors.
This package provides a shared tsibble data easily communicates between htmlwidgets on both client and server sides, powered by crosstalk'. A shiny module is provided to visually explore periodic/aperiodic temporal patterns.
Pure R implementation of Apache Thrift. This library doesn't require any code generation. To learn more about Thrift go to <https://thrift.apache.org>.
An object model for source text and translations. Find and extract translatable strings. Provide translations and seamlessly retrieve them at runtime.
Most estimators implemented by the video game industry cannot obtain reliable initial estimates nor guarantee comparability between distant estimates. TrueSkill Through Time solves all these problems by modeling the entire history of activities using a single Bayesian network allowing the information to propagate correctly throughout the system. This algorithm requires only a few iterations to converge, allowing millions of observations to be analyzed using any low-end computer. Landfried G, Mocskos E (2025). "TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia, Python, and R." <doi:10.18637/jss.v112.i06>. The core ideas implemented in this project were developed by Dangauthier P, Herbrich R, Minka T, Graepel T (2007). "Trueskill through time: Revisiting the history of chess.".
Gives the required 2^n treatment combinations in a 2^n symmetric factorial experiment in their respective standard order.
Thematic maps are geographical maps in which spatial data distributions are visualized. This package offers a flexible, layer-based, and easy to use approach to create thematic maps, such as choropleths and bubble maps.
This package provides tools for performing Transition Network Analysis (TNA) to study relational dynamics, including functions for building and plotting TNA models, calculating centrality measures, and identifying dominant events and patterns. TNA statistical techniques (e.g., bootstrapping and permutation tests) ensure the reliability of observed insights and confirm that identified dynamics are meaningful. See (Saqr et al., 2025) <doi:10.1145/3706468.3706513> for more details on TNA.
Automates documentation of test_that() calls within R test files. The package scans test sources, extracts human-readable test titles (even when composed with functions like paste() or glue::glue(), ... etc.), and generates reproducible roxygen2-style listings that can be inserted both globally and per-section. It ensures idempotent updates and supports customizable numbering templates with hierarchical indices. Designed for developers, QA teams, and package maintainers seeking consistent, self-documenting test inventories.
Tri-hierarchical incomplete block design is defined as an arrangement of v treatments each replicated r times in a three system of blocks if, each block of the first system contains m_1 blocks of second system and each block of the second system contains m_2 blocks of the third system. Ignoring the first and second system of blocks, it leaves an incomplete block design with b_3 blocks of size k_3i units; ignoring first and third system of blocks, it leaves an incomplete block design with b_2 blocks each of size k_2i units and ignoring the second and third system of blocks, it leaves an incomplete block design with b_1 blocks each of size k_1 units. For dealing with experimental circumstances where there are three nested sources of variation, a tri-hierarchical incomplete block design can be adopted. Tri - hierarchical incomplete block designs can find application potential in obtaining mating-environmental designs for breeding trials. To know more about nested block designs one can refer Preece (1967) <doi:10.1093/biomet/54.3-4.479>. This package includes series1(), series2(), series3() and series4() functions. This package generates tri-hierarchical designs with six component designs under certain parameter restrictions.