Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Automates documentation of test_that() calls within R test files. The package scans test sources, extracts human-readable test titles (even when composed with functions like paste() or glue::glue(), ... etc.), and generates reproducible roxygen2-style listings that can be inserted both globally and per-section. It ensures idempotent updates and supports customizable numbering templates with hierarchical indices. Designed for developers, QA teams, and package maintainers seeking consistent, self-documenting test inventories.
To visualize the gene structure with multiple isoforms better, I developed this package to draw different transcript structures easily.
This package provides a general framework of two directional simultaneous inference is provided for high-dimensional as well as the fixed dimensional models with manifest variable or latent variable structure, such as high-dimensional mean models, high- dimensional sparse regression models, and high-dimensional latent factors models. It is making the simultaneous inference on a set of parameters from two directions, one is testing whether the estimated zero parameters indeed are zero and the other is testing whether there exists zero in the parameter set of non-zero. More details can be referred to Wei Liu, et al. (2022) <doi:10.48550/arXiv.2012.11100>.
This package provides a simple type annotation for R that is usable in scripts, in the R console and in packages. It is intended as a convention to allow other packages to use the type information to provide error checking, automatic documentation or optimizations.
This package provides ggplot2 geoms for drawing treemaps.
This package provides a comprehensive resource for data on Taylor Swift songs. Data is included for all officially released studio albums, extended plays (EPs), and individual singles are included. Data comes from Genius (lyrics) and SoundStat (song characteristics). Additional functions are included for easily creating data visualizations with color palettes inspired by Taylor Swift's album covers.
This package provides a wrapper for the TexTra API <https://mt-auto-minhon-mlt.ucri.jgn-x.jp/>, a web service for translating texts between different languages. TexTra API account is required to use the service.
This package provides functions for the retrieval, manipulation, and visualization of geospatial data, with an aim towards producing 3D landscape visualizations in the Unity 3D rendering engine. Functions are also provided for retrieving elevation data and base map tiles from the USGS National Map <https://apps.nationalmap.gov/services/>.
Characterisation of the extremal dependence structure of time series, avoiding pre-processing and filtering as done typically with peaks-over-threshold methods. It uses the conditional approach of Heffernan and Tawn (2004) <DOI:10.1111/j.1467-9868.2004.02050.x> which is very flexible in terms of extremal and asymptotic dependence structures, and Bayesian methods improve efficiency and allow for deriving measures of uncertainty. For example, the extremal index, related to the size of clusters in time, can be estimated and samples from its posterior distribution obtained.
Interactive laboratory of Time Series based in Box-Jenkins methodology.
This package implements the approach described in Fong and Grimmer (2016) <https://aclweb.org/anthology/P/P16/P16-1151.pdf> for automatically discovering latent treatments from a corpus and estimating the average marginal component effect (AMCE) of each treatment. The data is divided into a training and test set. The supervised Indian Buffet Process (sibp) is used to discover latent treatments in the training set. The fitted model is then applied to the test set to infer the values of the latent treatments in the test set. Finally, Y is regressed on the latent treatments in the test set to estimate the causal effect of each treatment.
This package provides a collection of functions for data analysis with two-by-two contingency tables. The package provides tools to compute measures of effect (odds ratio, risk ratio, and risk difference), calculate impact numbers and attributable fractions, and perform hypothesis testing. Statistical analysis methods are oriented towards epidemiological investigation of relationships between exposures and outcomes.
High-performance parsing of Tableau workbook files into tidy data frames and dependency graphs for other visualization tools like R Shiny or Power BI replication.
This package implements two tests for same-source of toolmarks. The chumbley_non_random() test follows the paper "An Improved Version of a Tool Mark Comparison Algorithm" by Hadler and Morris (2017) <doi:10.1111/1556-4029.13640>. This is an extension of the Chumbley score as previously described in "Validation of Tool Mark Comparisons Obtained Using a Quantitative, Comparative, Statistical Algorithm" by Chumbley et al (2010) <doi:10.1111/j.1556-4029.2010.01424.x>. fixed_width_no_modeling() is based on correlation measures in a diamond shaped area of the toolmark as described in Hadler (2017).
This package provides a collection of methods to estimate parameters of different tempered stable distributions (TSD). Currently, there are seven different tempered stable distributions to choose from: Tempered stable subordinator distribution, classical TSD, generalized classical TSD, normal TSD, modified TSD, rapid decreasing TSD, and Kim-Rachev TSD. The package also provides functions to compute density and probability functions and tools to run Monte Carlo simulations. This package has already been used for the estimation of tempered stable distributions (Massing (2023) <arXiv:2303.07060>). The following references form the theoretical background for various functions in this package. References for each function are explicitly listed in its documentation: Bianchi et al. (2010) <doi:10.1007/978-88-470-1481-7_4> Bianchi et al. (2011) <doi:10.1137/S0040585X97984632> Carrasco (2017) <doi:10.1017/S0266466616000025> Feuerverger (1981) <doi:10.1111/j.2517-6161.1981.tb01143.x> Hansen et al. (1996) <doi:10.1080/07350015.1996.10524656> Hansen (1982) <doi:10.2307/1912775> Hofert (2011) <doi:10.1145/2043635.2043638> Kawai & Masuda (2011) <doi:10.1016/j.cam.2010.12.014> Kim et al. (2008) <doi:10.1016/j.jbankfin.2007.11.004> Kim et al. (2009) <doi:10.1007/978-3-7908-2050-8_5> Kim et al. (2010) <doi:10.1016/j.jbankfin.2010.01.015> Kuechler & Tappe (2013) <doi:10.1016/j.spa.2013.06.012> Rachev et al. (2011) <doi:10.1002/9781118268070>.
Consolidates and calculates different sets of time-series features from multiple R and Python packages including Rcatch22 Henderson, T. (2021) <doi:10.5281/zenodo.5546815>, feasts O'Hara-Wild, M., Hyndman, R., and Wang, E. (2021) <https://CRAN.R-project.org/package=feasts>, tsfeatures Hyndman, R., Kang, Y., Montero-Manso, P., Talagala, T., Wang, E., Yang, Y., and O'Hara-Wild, M. (2020) <https://CRAN.R-project.org/package=tsfeatures>, tsfresh Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr A.W. (2018) <doi:10.1016/j.neucom.2018.03.067>, TSFEL Barandas, M., et al. (2020) <doi:10.1016/j.softx.2020.100456>, and Kats Facebook Infrastructure Data Science (2021) <https://facebookresearch.github.io/Kats/>.
Htmlwidget of Tippyjs to add tooltips to Shiny apps and R markdown documents.
This package implements nonlinear autoregressive (AR) time series models. For univariate series, a non-parametric approach is available through additive nonlinear AR. Parametric modeling and testing for regime switching dynamics is available when the transition is either direct (TAR: threshold AR) or smooth (STAR: smooth transition AR, LSTAR). For multivariate series, one can estimate a range of TVAR or threshold cointegration TVECM models with two or three regimes. Tests can be conducted for TVAR as well as for TVECM (Hansen and Seo 2002 and Seo 2006).
This package provides a set of functions to estimate rank and factor loadings of time series tensor factor models. A tensor is a multidimensional array. To analyze high-dimensional tensor time series, factor model is a major dimension reduction tool. TensorPreAve provides functions to estimate the rank of core tensors and factor loading spaces of tensor time series. More specifically, a pre-averaging method that accumulates information from tensor fibres is used to estimate the factor loading spaces. The estimated directions corresponding to the strongest factors are then used for projecting the data for a potentially improved re-estimation of the factor loading spaces themselves. A new rank estimation method is also implemented to utilizes correlation information from the projected data. See Chen and Lam (2023) <arXiv:2208.04012> for more details.
Facilitate the movement between data frames to xts'. Particularly useful when moving from tidyverse to the widely used xts package, which is the input format of choice to various other packages. It also allows the user to use a spread_by argument for a character column xts conversion.
Split a dataframe, tibble, or data.table into training and test sets. Return either a list, an index, or directly assign training and test sets into memory.
The Time-Delay Correlation algorithm (TDCor) reconstructs the topology of a gene regulatory network (GRN) from time-series transcriptomic data. The algorithm is described in details in Lavenus et al., Plant Cell, 2015. It was initially developed to infer the topology of the GRN controlling lateral root formation in Arabidopsis thaliana. The time-series transcriptomic dataset which was used in this study is included in the package to illustrate how to use it.
Several datasets which describe the challenges and results of competitions in Tournament of Champions. This data is useful for practicing data wrangling, graphing, and analyzing how each season of Tournament of Champions played out.
This package provides functions are provided for prior specification in divergence time estimation using fossils as well as other kinds of data. It provides tools for interacting with the input and output of Bayesian platforms in evolutionary biology such as BEAST2', MrBayes', RevBayes', or MCMCTree'. It Implements a simple measure similarity between probability density functions for comparing prior and posterior Bayesian densities, as well as code for calculating the combination of distributions using conflation of Hill (2008). Functions for estimating the origination time in collections of distributions using the x-intercept (e.g., Draper and Smith, 1998) and stratigraphic intervals (Marshall 2010) are also available. Hill, T. 2008. "Conflations of probability distributions". Transactions of the American Mathematical Society, 363:3351-3372. <doi:10.48550/arXiv.0808.1808>, Draper, N. R. and Smith, H. 1998. "Applied Regression Analysis". 1--706. Wiley Interscience, New York. <DOI:10.1002/9781118625590>, Marshall, C. R. 2010. "Using confidence intervals to quantify the uncertainty in the end-points of stratigraphic ranges". Quantitative Methods in Paleobiology, 291--316. <DOI:10.1017/S1089332600001911>.