Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package creates visualization plots for 2D projected data including ellipse plots, Voronoi diagram plots, and combined ellipse-Voronoi plots. Designed to visualize class separation in dimensionally reduced data from techniques like principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) or others. For more details see Lotsch and Ultsch (2024) <doi:10.1016/j.imu.2024.101573>.
The spectral characteristics of a bivariate series (Marginal Spectra, Coherency- and Phase-Spectrum) determine whether there is a strong presence of short-, medium-, or long-term fluctuations (components of certain frequencies in the spectral representation of the series) in each one of them. These are induced by strong peaks of the marginal spectra of each series at the corresponding frequencies. The spectral characteristics also determine how strongly these short-, medium-, or long-term fluctuations of the two series are correlated between the two series. Information on this is provided by the Coherency spectrum at the corresponding frequencies. Finally, certain fluctuations of the two series may be lagged to each other. Information on this is provided by the Phase spectrum at the corresponding frequencies. The idea in this package is to define a VAR (Vector autoregression) model with desired spectral characteristics by specifying a number of polynomials, required to define the VAR. See Ioannidis(2007) <doi:10.1016/j.jspi.2005.12.013>. These are specified via their roots, instead of via their coefficients. This is an idea borrowed from the Time Series Library of R. Dahlhaus, where it is used for defining ARMA models for univariate time series. This way, one may e.g. specify a VAR inducing a strong presence of long-term fluctuations in series 1 and in series 2, which are weakly correlated, but lagged by a number of time units to each other, while short-term fluctuations in series 1 and in series 2, are strongly present only in one of the two series, while they are strongly correlated to each other between the two series. Simulation from such models allows studying the behavior of data-analysis tools, such as estimation of the spectra, under different circumstances, as e.g. peaks in the spectra, generating bias, induced by leakage.
R implementation of the vol2bird software for generating vertical profiles of birds and other biological signals in weather radar data. See Dokter et al. (2011) <doi:10.1098/rsif.2010.0116> for a paper describing the methodology.
This package provides a framework for generating virtual species distributions, a procedure increasingly used in ecology to improve species distribution models. This package integrates the existing methodological approaches with the objective of generating virtual species distributions with increased ecological realism.
This package provides functions for the mass-univariate voxelwise analysis of medical imaging data that follows the NIfTI <http://nifti.nimh.nih.gov> format.
This package provides functions to run statistical analyses on surface-based neuroimaging data, computing measures including cortical thickness and surface area of the whole-brain and of the hippocampi. It can make use of FreeSurfer', fMRIprep', XCP-D', HCP and CAT12 preprocessed datasets and HippUnfold hippocampal segmentation outputs for a given sample by restructuring the data values into a single file. The single file can then be used by the package for analyses independently from its base dataset and without need for its access.
Collapsed Variational Inference for a Dirichlet Process (DP) mixture model with unknown covariance matrix structure and DP concentration parameter. It enables efficient clustering of high-dimensional data with significantly improved computational speed than traditional MCMC methods. The package incorporates 8 parameterisations and corresponding prior choices for the unknown covariance matrix, from which the user can choose and apply accordingly.
Converts Vietnam's provinces names and ID across different formats. Handles diacritics and different spellings.
Debugging pipe chains often consists of viewing the output after each step. This package adds RStudio addins and two functions that allow outputing each or select steps in a convenient way.
This package provides a convenient interface for constructing plots to visualize the fit of regression models arising from a wide variety of models in R ('lm', glm', coxph', rlm', gam', locfit', lmer', randomForest', etc.).
Handling of vegetation data from different sources ( Turboveg 2.0 <https://www.synbiosys.alterra.nl/turboveg/>; the German national repository <https://www.vegetweb.de> and others. Taxonomic harmonization (given appropriate taxonomic lists, e.g. the Euro+Med list <https://eurosl.infinitenature.org>).
Deploy, execute, and analyze the results of models hosted on the ValidMind platform <https://validmind.com>. This package interfaces with the Python client library in order to allow advanced diagnostics and insight into trained models all from an R environment.
This package provides methods to calculate diagnostics for multicollinearity among predictors in a linear or generalized linear model. It also provides methods to visualize those diagnostics following Friendly & Kwan (2009), "Whereâ s Waldo: Visualizing Collinearity Diagnostics", <doi:10.1198/tast.2009.0012>. These include better tabular presentation of collinearity diagnostics that highlight the important numbers, a semi-graphic tableplot of the diagnostics to make warning and danger levels more salient, and a "collinearity biplot" of the smallest dimensions of predictor space, where collinearity is most apparent.
Penalized weighted least-squares estimate for variable selection on correlated multiply imputed data and penalized estimating equations for generalized linear models with multiple imputation. Reference: Li, Y., Yang, H., Yu, H., Huang, H., Shen, Y*. (2023) "Penalized estimating equations for generalized linear models with multiple imputation", <doi:10.1214/22-AOAS1721>. Li, Y., Yang, H., Yu, H., Huang, H., Shen, Y*. (2023) "Penalized weighted least-squares estimate for variable selection on correlated multiply imputed data", <doi:10.1093/jrsssc/qlad028>.
This package provides methods to calculate the expected value of information from a decision-analytic model. This includes the expected value of perfect information (EVPI), partial perfect information (EVPPI) and sample information (EVSI), and the expected net benefit of sampling (ENBS). A range of alternative computational methods are provided under the same user interface. See Heath et al. (2024) <doi:10.1201/9781003156109>, Jackson et al. (2022) <doi:10.1146/annurev-statistics-040120-010730>.
In order to make it easy to use variance reduction algorithms for any simulation, this framework can help you. We propose user friendly and easy to extend framework. Antithetic Variates, Inner Control Variates, Outer Control Variates and Importance Sampling algorithms are available in the framework. User can write its own simulation function and use the Variance Reduction techniques in this package to obtain more efficient simulations. An implementation of Asian Option simulation is already available within the package. See Kemal Dinçer Dingeç & Wolfgang Hörmann (2012) <doi:10.1016/j.ejor.2012.03.046>.
Fast algorithms for fitting Bayesian variable selection models and computing Bayes factors, in which the outcome (or response variable) is modeled using a linear regression or a logistic regression. The algorithms are based on the variational approximations described in "Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies" (P. Carbonetto & M. Stephens, 2012, <DOI:10.1214/12-BA703>). This software has been applied to large data sets with over a million variables and thousands of samples.
Historical results for the state of Virginia lottery draw games. Data were downloaded from https://www.valottery.com/.
Generate suggestions for validation rules from a reference data set, which can be used as a starting point for domain specific rules to be checked with package validate'.
Estimates the type of variables in non-quality controlled data. The prediction is based on a random forest model, trained on over 5000 medical variables with accuracy of 99%. The accuracy can hardy depend on type and coding style of data.
This package implements a maximum likelihood estimation (MLE) method for estimation and prediction of Gaussian process-based spatially varying coefficient (SVC) models (Dambon et al. (2021a) <doi:10.1016/j.spasta.2020.100470>). Covariance tapering (Furrer et al. (2006) <doi:10.1198/106186006X132178>) can be applied such that the method scales to large data. Further, it implements a joint variable selection of the fixed and random effects (Dambon et al. (2021b) <doi:10.1080/13658816.2022.2097684>). The package and its capabilities are described in (Dambon et al. (2021c) <doi:10.48550/arXiv.2106.02364>).
This package provides a set of functions for generating HTML to embed hosted video in your R Markdown documents or Shiny applications.
Calibrates cause-specific mortality fractions (CSMF) estimates generated by computer-coded verbal autopsy (CCVA) algorithms from WHO-standardized verbal autopsy (VA) survey data. It leverages data from the multi-country Child Health and Mortality Prevention Surveillance (CHAMPS) project <https://champshealth.org/>, which determines gold standard causes of death via Minimally Invasive Tissue Sampling (MITS). By modeling the CHAMPS data using the misclassification matrix modeling framework proposed in Pramanik et al. (2025, <doi:10.1214/24-AOAS2006>), the package includes an inventory of 48 uncertainty-quantified misclassification matrices for three CCVA algorithms (EAVA, InSilicoVA, InterVA), two age groups (neonates aged 0-27 days and children aged 1-59 months), and eight "countries" (seven countries in CHAMPS -- Bangladesh, Ethiopia, Kenya, Mali, Mozambique, Sierra Leone, South Africa -- and an estimate for countries not in CHAMPS). Given a VA-only data for an age group, CCVA algorithm, and country, the package uses the corresponding uncertainty-quantified misclassification matrix estimates as an informative prior, and utilizes the modular VA-calibration to produce calibrated CSMF estimates. It also supports ensemble calibration when VA-only data are provided for multiple algorithms. More generally, the package can be applied to calibrate predictions from a discrete classifier (or ensemble of classifiers) utilizing user-provided fixed or uncertainty-quantified misclassification matrices. This work is supported by the Bill and Melinda Gates Foundation Grant INV-034842.
This package provides direct access to linked names for the same entity across the world's major name authority files, including national and regional variations in language, character set, and spelling. For more information go to <https://viaf.org/>.