Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Functionality to perform adaptive multi-wave sampling for efficient chart validation. Code allows one to define strata, adaptively sample using several types of confidence bounds for the quantity of interest (Lai's confidence bands, Bayesian credible intervals, normal confidence intervals), and sampling strategies (random sampling, stratified random sampling, Neyman's sampling, see Neyman (1934) <doi:10.2307/2342192> and Neyman (1938) <doi:10.1080/01621459.1938.10503378>).
This package provides functions for building cognitive maps based on qualitative data. Inputs are textual sources (articles, transcription of qualitative interviews of agents,...). These sources have been coded using relations and are linked to (i) a table describing the variables (or concepts) used for the coding and (ii) a table describing the sources (typology of agents, ...). Main outputs are Individual Cognitive Maps (ICM), Social Cognitive Maps (all sources or group of sources) and a list of quotes linked to relations. This package is linked to the work done during the PhD of Frederic M. Vanwindekens (CRA-W / UCL) hold the 13 of May 2014 at University of Louvain in collaboration with the Walloon Agricultural Research Centre (project MIMOSA, MOERMAN fund).
This package provides tools for calculating coordinate representations of hypocycloids, epicyloids, hypotrochoids, and epitrochoids (altogether called cycloids here) with different scaling and positioning options. The cycloids can be visualised with any appropriate graphics function in R.
This package provides functions for loading large (10M+ lines) CSV and other delimited files, similar to read.csv, but typically faster and using less memory than the standard R loader. While not entirely general, it covers many common use cases when the types of columns in the CSV file are known in advance. In addition, the package provides a class int64', which represents 64-bit integers exactly when reading from a file. The latter is useful when working with 64-bit integer identifiers exported from databases. The CSV file loader supports common column types including integer', double', string', and int64', leaving further type transformations to the user.
This package performs multiple comparison procedures on curve observations among different treatment groups. The methods are applicable in a variety of situations (such as independent groups with equal or unequal sample sizes, or repeated measures) by using parametric bootstrap. References to these procedures can be found at Konietschke, Gel, and Brunner (2014) <doi:10.1090/conm/622/12431> and Westfall (2011) <doi:10.1080/10543406.2011.607751>.
Speeds up exploratory data analysis (EDA) by providing a succinct workflow and interactive visualization tools for understanding which features have relationships to target (response). Uses binary correlation analysis to determine relationship. Default correlation method is the Pearson method. Lian Duan, W Nick Street, Yanchi Liu, Songhua Xu, and Brook Wu (2014) <doi:10.1145/2637484>.
This package contains the probability density function, cumulative distribution function, quantile function, and random number generator for composite and discrete composite distributions with Pareto tails. The detailed description of the methods and the applications of the methods can be found in Bowen Liu, Malwane M.A. Ananda (2023) <arXiv:2309.16443>.
This package provides functions to create contour-enhanced forest plots for meta-analysis, supporting binary outcomes (e.g., odds ratios, risk ratios), continuous outcomes (e.g., correlations), and prevalence estimates. Includes options for prediction intervals, customized colors, study labeling, and contour shading to highlight regions of statistical significance. Based on metafor and ggplot2'.
Augment clinical data with metadata to create output used in conventional publications and reports.
Estimation of one- and two-sided confidence intervals via the numerical inversion of the cumulative distribution function of a statistic's sampling distribution. For more details, see section 9.2.3 of Casella and Berger (2002) <ISBN:0534243126>.
This package performs biomedical named entity recognition, Unified Medical Language System (UMLS) concept mapping, and negation detection using the Python spaCy', scispaCy', and medspaCy packages, and transforms extracted data into a wide format for inclusion in machine learning models. The development of the scispaCy package is described by Neumann (2019) <doi:10.18653/v1/W19-5034>. The medspacy package uses ConText', an algorithm for determining the context of clinical statements described by Harkema (2009) <doi:10.1016/j.jbi.2009.05.002>. Clinspacy also supports entity embeddings from scispaCy and UMLS cui2vec concept embeddings developed by Beam (2018) <arXiv:1804.01486>.
This package provides a minimal R-package to approximately detect global and imported functions or variables from R-source code or R-packages by static code analysis.
This package provides comprehensive tools for extracting and analyzing scientific content from PDF documents, including citation extraction, reference matching, text analysis, and bibliometric indicators. Supports multi-column PDF layouts, CrossRef API <https://www.crossref.org/documentation/retrieve-metadata/rest-api/> integration, and advanced citation parsing.
The phenology of plants (i.e. the timing of their annual life phases) depends on climatic cues. For temperate trees and many other plants, spring phases, such as leaf emergence and flowering, have been found to result from the effects of both cool (chilling) conditions and heat. Fruit tree scientists (pomologists) have developed some metrics to quantify chilling and heat (e.g. see Luedeling (2012) <doi:10.1016/j.scienta.2012.07.011>). chillR contains functions for processing temperature records into chilling (Chilling Hours, Utah Chill Units and Chill Portions) and heat units (Growing Degree Hours). Regarding chilling metrics, Chill Portions are often considered the most promising, but they are difficult to calculate. This package makes it easy. chillR also contains procedures for conducting a PLS analysis relating phenological dates (e.g. bloom dates) to either mean temperatures or mean chill and heat accumulation rates, based on long-term weather and phenology records (Luedeling and Gassner (2012) <doi:10.1016/j.agrformet.2011.10.020>). As of version 0.65, it also includes functions for generating weather scenarios with a weather generator, for conducting climate change analyses for temperature-based climatic metrics and for plotting results from such analyses. Since version 0.70, chillR contains a function for interpolating hourly temperature records.
CGAL is a C++ library that aims to provide easy access to efficient and reliable algorithms in computational geometry. Since its version 4, CGAL can be used as standalone header-only library and is available under a double GPL-3|LGPL license. <https://www.cgal.org/>.
Change point tests for joint distributions and copulas using pseudo-observations with multipliers or bootstrap. The processes used here have been defined in Bucher, Kojadinovic, Rohmer & Segers <doi:10.1016/j.jmva.2014.07.012> and Nasri & Remillard <doi:10.1016/j.jmva.2019.03.002>.
Utility functions to facilitate the import, the reporting and analysis of clinical data. Example datasets in SDTM and ADaM format, containing a subset of patients/domains from the CDISC Pilot 01 study are also available as R datasets to demonstrate the package functionalities.
Perform post hoc analysis based on residuals of Pearson's Chi-squared Test for Count Data based on T. Mark Beasley & Randall E. Schumacker (1995) <doi: 10.1080/00220973.1995.9943797>.
This package provides methods for analyzing (cell) motion in two or three dimensions. Available measures include displacement, confinement ratio, autocorrelation, straightness, turning angle, and fractal dimension. Measures can be applied to entire tracks, steps, or subtracks with varying length. While the methodology has been developed for cell trajectory analysis, it is applicable to anything that moves including animals, people, or vehicles. Some of the methodology implemented in this packages was described by: Beauchemin, Dixit, and Perelson (2007) <doi:10.4049/jimmunol.178.9.5505>, Beltman, Maree, and de Boer (2009) <doi:10.1038/nri2638>, Gneiting and Schlather (2004) <doi:10.1137/S0036144501394387>, Mokhtari, Mech, Zitzmann, Hasenberg, Gunzer, and Figge (2013) <doi:10.1371/journal.pone.0080808>, Moreau, Lemaitre, Terriac, Azar, Piel, Lennon-Dumenil, and Bousso (2012) <doi:10.1016/j.immuni.2012.05.014>, Textor, Peixoto, Henrickson, Sinn, von Andrian, and Westermann (2011) <doi:10.1073/pnas.1102288108>, Textor, Sinn, and de Boer (2013) <doi:10.1186/1471-2105-14-S6-S10>, Textor, Henrickson, Mandl, von Andrian, Westermann, de Boer, and Beltman (2014) <doi:10.1371/journal.pcbi.1003752>.
Reduction-based techniques for cost-sensitive multi-class classification, in which each observation has a different cost for classifying it into one class, and the goal is to predict the class with the minimum expected cost for each new observation. Implements Weighted All-Pairs (Beygelzimer, A., Langford, J., & Zadrozny, B., 2008, <doi:10.1007/978-0-387-79361-0_1>), Weighted One-Vs-Rest (Beygelzimer, A., Dani, V., Hayes, T., Langford, J., & Zadrozny, B., 2005, <https://dl.acm.org/citation.cfm?id=1102358>) and Regression One-Vs-Rest. Works with arbitrary classifiers taking observation weights, or with regressors. Also implements cost-proportionate rejection sampling for working with classifiers that don't accept observation weights.
This package implements Cramer-von Mises Statistics for testing fit to (1) fully specified discrete distributions as described in Choulakian, Lockhart and Stephens (1994) <doi:10.2307/3315828> (2) discrete distributions with unknown parameters that must be estimated from the sample data, see Spinelli & Stephens (1997) <doi:10.2307/3315735> and Lockhart, Spinelli and Stephens (2007) <doi:10.1002/cjs.5550350111> (3) grouped continuous distributions with Unknown Parameters, see Spinelli (2001) <doi:10.2307/3316040>. Maximum likelihood estimation (MLE) is used to estimate the parameters. The package computes the Cramer-von Mises Statistics, Anderson-Darling Statistics and the Watson-Stephens Statistics and their p-values.
Network-based clustering using a Bayesian network mixture model with optional covariate adjustment.
This package provides an alternative approach to multiple testing by calculating a simultaneous upper confidence bounds for the number of true null hypotheses among any subset of the hypotheses of interest, using the methods of Goeman and Solari (2011) <doi:10.1214/11-STS356>.
This package provides tools for estimating censored Almost Ideal (AI) and Quadratic Almost Ideal (QUAI) demand systems using Maximum Likelihood Estimation (MLE). It includes functions for calculating demand share equations and the truncated log-likelihood function for a system of equations, incorporating demographic variables. The package is designed to handle censored data, where some observations may be zero due to non-purchase of certain goods. Package also contains a procedure to approximate demand elasticities numerically and estimate standard errors via Delta Method. It is particularly useful for applied researchers analyzing household consumption data.