Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Categorize links and nodes from multiple networks in 3 categories: Common links (alpha) specific links (gamma), and different links (beta). Also categorizes the links into sub-categories and groups. The package includes a visualization tool for the networks. More information about the methodology can be found at: Gysi et. al., 2018 <arXiv:1802.00828>.
The reliability of clusters is estimated using random projections. A set of stability measures is provided to assess the reliability of the clusters discovered by a generic clustering algorithm. The stability measures are taylored to high dimensional data (e.g. DNA microarray data) (Valentini, G (2005), <doi:10.1093/bioinformatics/bti817>.
Gather boxscore and play-by-play data from the Canadian Elite Basketball League (CEBL) <https://www.cebl.ca> to create a repository of basic and advanced statistics for teams and players.
Create CUSUM (cumulative sum) statistics from a vector or dataframe. Also create single or faceted CUSUM control charts, with or without control limits. Accepts vector, dataframe, tibble or data.table inputs.
This package implements the nonparametric moving sum procedure for detecting changes in the joint characteristic function (NP-MOJO) for multiple change point detection in multivariate time series. See McGonigle, E. T., Cho, H. (2025) <doi:10.1093/biomet/asaf024> for description of the NP-MOJO methodology.
Utility functions that provides wrapper to descriptive base functions like cor, mean and table. It makes use of the formula interface to pass variables to functions. It also provides operators to concatenate (%+%), to repeat (%n%) and manage character vectors for nice display.
Information on activities to promote scholarships in Brazil and abroad for international mobility programs, recorded in Capes computerized payment systems. The CAPES database refers to international mobility programs for the period from 2010 to 2019 <https://dadosabertos.capes.gov.br/dataset/>.
Evaluation of the Carlson elliptic integrals and the incomplete elliptic integrals with complex arguments. The implementations use Carlson's algorithms <doi:10.1007/BF02198293>. Applications of elliptic integrals include probability distributions, geometry, physics, mechanics, electrodynamics, statistical mechanics, astronomy, geodesy, geodesics on conics, and magnetic field calculations.
This package provides functions to analyze the spatial distribution of biodiversity, in particular categorical analysis of neo- and paleo-endemism (CANAPE) as described in Mishler et al (2014) <doi:10.1038/ncomms5473>. canaper conducts statistical tests to determine the types of endemism that occur in a study area while accounting for the evolutionary relationships of species.
This package provides a set of functions to fit a boosting conditional logit model.
This package provides a function that performs the adaptive mean shift algorithm for individual tree crown delineation in 3D point clouds as proposed by Ferraz et al. (2016) <doi:10.1016/j.rse.2016.05.028>, as well as supporting functions.
Generates all necessary C functions allowing the user to work with the compiled-code interface of ode() and bvptwp(). The implementation supports "forcings" and "events". Also provides functions to symbolically compute Jacobians, sensitivity equations and adjoint sensitivities being the basis for sensitivity analysis.
Fits convolution-based nonstationary Gaussian process models to point-referenced spatial data. The nonstationary covariance function allows the user to specify the underlying correlation structure and which spatial dependence parameters should be allowed to vary over space: the anisotropy, nugget variance, and process variance. The parameters are estimated via maximum likelihood, using a local likelihood approach. Also provided are functions to fit stationary spatial models for comparison, calculate the Kriging predictor and standard errors, and create various plots to visualize nonstationarity.
This package provides a shortcut procedure is proposed to implement closed testing for large-scale multiple testings, especially with the global test. This shortcut is asymptotically equivalent to closed testing and post hoc. Users could detect any possible sets of features or pathways with family-wise error rate controlled. The global test is powerful to detect associations between a group of features and an outcome of interest.
Graphically display the (causal) effect of a continuous variable on a time-to-event outcome using multiple different types of plots based on g-computation. Those functions include, among others, survival area plots, survival contour plots, survival quantile plots and 3D surface plots. Due to the use of g-computation, all plot allow confounder-adjustment naturally. For details, see Robin Denz, Nina Timmesfeld (2023) <doi:10.1097/EDE.0000000000001630>.
The Satellite Application Facility on Climate Monitoring (CM SAF) is a ground segment of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and one of EUMETSATs Satellite Application Facilities. The CM SAF contributes to the sustainable monitoring of the climate system by providing essential climate variables related to the energy and water cycle of the atmosphere (<https://www.cmsaf.eu>). It is a joint cooperation of eight National Meteorological and Hydrological Services. The cmsafvis R-package provides a collection of R-operators for the analysis and visualization of CM SAF NetCDF data. CM SAF climate data records are provided for free via (<https://wui.cmsaf.eu/safira>). Detailed information and test data are provided on the CM SAF webpage (<http://www.cmsaf.eu/R_toolbox>).
Price credit default swaps using C code from the International Swaps and Derivatives Association CDS Standard Model. See <https://www.cdsmodel.com/cdsmodel/documentation.html> for more information about the model and <https://www.cdsmodel.com/cdsmodel/cds-disclaimer.html> for license details for the C code.
This package implements the multiple changepoint algorithm PELT with a nonparametric cost function based on the empirical distribution of the data. This package extends the changepoint package (see Killick, R and Eckley, I (2014) <doi:10.18637/jss.v058.i03> ).
Interface to interest and foreign exchange rates published by the Czech National Bank.
Eases the use of ecotoxicological effect models. Can simulate common toxicokinetic-toxicodynamic (TK/TD) models such as General Unified Threshold models of Survival (GUTS) and Lemna. It can derive effects and effect profiles (EPx) from scenarios. It supports the use of tidyr workflows employing the pipe symbol. Time-consuming tasks can be parallelized.
This package provides a simple, fast algorithm to find the neighbors and similarities of users in user-based filtering systems, to break free from the complex computation of existing similarity formulas and the ability to solve big data.
Computes a confidence interval for a specified linear combination of the regression parameters in a linear regression model with iid normal errors with known variance when there is uncertain prior information that a distinct specified linear combination of the regression parameters takes a given value. This confidence interval, found by numerical nonlinear constrained optimization, has the required minimum coverage and utilizes this uncertain prior information through desirable expected length properties. This confidence interval has the following three practical applications. Firstly, if the error variance has been accurately estimated from previous data then it may be treated as being effectively known. Secondly, for sufficiently large (dimension of the response vector) minus (dimension of regression parameter vector), greater than or equal to 30 (say), if we replace the assumed known value of the error variance by its usual estimator in the formula for the confidence interval then the resulting interval has, to a very good approximation, the same coverage probability and expected length properties as when the error variance is known. Thirdly, some more complicated models can be approximated by the linear regression model with error variance known when certain unknown parameters are replaced by estimates. This confidence interval is described in Mainzer, R. and Kabaila, P. (2019) <doi:10.32614/RJ-2019-026>, and is a member of the family of confidence intervals proposed by Kabaila, P. and Giri, K. (2009) <doi:10.1016/j.jspi.2009.03.018>.
This package provides a wrapper for the Clockify API <https://docs.clockify.me/>, making it possible to query, insert and update time keeping data.
This package provides a method for modeling genetic data as a combination of discrete layers, within each of which relatedness may decay continuously with geographic distance. This package contains code for running analyses (which are implemented in the modeling language rstan') and visualizing and interpreting output. See the paper for more details on the model and its utility.