Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for writing and debugging R code. Provides: %.>% dot-pipe (an S3 configurable pipe), unpack/to (R style multiple assignment/return), build_frame()'/'draw_frame() ('data.frame example tools), qc() (quoting concatenate), := (named map builder), let() (converts non-standard evaluation interfaces to parametric standard evaluation interfaces, inspired by gtools::strmacro() and base::bquote()'), and more.
Estimates the Vevea and Hedges (1995) weight-function model. By specifying arguments, users can also estimate the modified model described in Vevea and Woods (2005), which may be more practical with small datasets. Users can also specify moderators to estimate a linear model. The package functionality allows users to easily extract the results of these analyses as R objects for other uses. In addition, the package includes a function to launch both models as a Shiny application. Although the Shiny application is also available online, this function allows users to launch it locally if they choose.
This package provides a framework for developing n-gram models for text prediction. It provides data cleaning, data sampling, extracting tokens from text, model generation, model evaluation and word prediction. For information on how n-gram models work we referred to: "Speech and Language Processing" <https://web.archive.org/web/20240919222934/https%3A%2F%2Fweb.stanford.edu%2F~jurafsky%2Fslp3%2F3.pdf>. For optimizing R code and using R6 classes we referred to "Advanced R" <https://adv-r.hadley.nz/r6.html>. For writing R extensions we referred to "R Packages", <https://r-pkgs.org/index.html>.
This package performs Wasserstein projections from the predictive distributions of any model into the space of predictive distributions of linear models. We utilize L1 penalties to also reduce the complexity of the model space. This package employs the methods as described in Dunipace, Eric and Lorenzo Trippa (2020) <doi:10.48550/arXiv.2012.09999>.
Run mixed-effects models that include weights at every level. The WeMix package fits a weighted mixed model, also known as a multilevel, mixed, or hierarchical linear model (HLM). The weights could be inverse selection probabilities, such as those developed for an education survey where schools are sampled probabilistically, and then students inside of those schools are sampled probabilistically. Although mixed-effects models are already available in R, WeMix is unique in implementing methods for mixed models using weights at multiple levels. Both linear and logit models are supported. Models may have up to three levels. Random effects are estimated using the PIRLS algorithm from lme4pureR (Walker and Bates (2013) <https://github.com/lme4/lme4pureR>).
Implementation of the methodologies described in 1) Alexander Petersen, Xi Liu and Afshin A. Divani (2021) <doi:10.1214/20-aos1971>, including global F tests, partial F tests, intrinsic Wasserstein-infinity bands and Wasserstein density bands, and 2) Chao Zhang, Piotr Kokoszka and Alexander Petersen (2022) <doi:10.1111/jtsa.12590>, including estimation, prediction, and inference of the Wasserstein autoregressive models.
Fits the combination of Wavelet-GARCH model for time series forecasting using algorithm by Paul (2015) <doi:10.3233/MAS-150328>.
Allows form managers to download entries from their respondents using Wufoo JSON API (<https://www.wufoo.com>). Additionally, the Wufoo reports - when public - can be also acquired programmatically. Note that building new forms within this package is not supported.
Book is "Linear Mixed Models: A Practical Guide Using Statistical Software" published in 2006 by Chapman Hall / CRC Press.
Allows to generate automatically testthat code files from offensive programming test cases. Generated test files are complete and ready to run. Using wyz.code.testthat you will earn a lot of time, reduce the number of errors in test case production, be able to test immediately generated files without any need to view or modify them, and enter a zero time latency between code implementation and industrial testing. As with testthat', you may complete provided test cases according to your needs to push testing further, but this need is nearly void when using wyz.code.offensiveProgramming'.
Time series outlier detection with non parametric test. This is a new outlier detection methodology (washer): efficient for time saving elaboration and implementation procedures, adaptable for general assumptions and for needing very short time series, reliable and effective as involving robust non parametric test. You can find two approaches: single time series (a vector) and grouped time series (a data frame). For other informations: Andrea Venturini (2011) Statistica - Universita di Bologna, Vol.71, pp.329-344. For an informal explanation look at R-bloggers on web.
Encapsulates the pattern of untidying data into a wide matrix, performing some processing, then turning it back into a tidy form. This is useful for several operations such as co-occurrence counts, correlations, or clustering that are mathematically convenient on wide matrices.
The Model Disability Survey (MDS) <https://www.who.int/activities/collection-of-data-on-disability> is a World Health Organization (WHO) general population survey instrument to assess the distribution of disability within a country or region, grounded in the International Classification of Functioning, Disability and Health <https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health>. This package provides fit-for-purpose functions for calculating and presenting the results from this survey, as used by the WHO. The package primarily provides functions for implementing Rasch Analysis (see Andrich (2011) <doi:10.1586/erp.11.59>) to calculate a metric scale for disability.
This package implements an automated binning of numeric variables and factors with respect to a dichotomous target variable. Two approaches are provided: An implementation of fine and coarse classing that merges granular classes and levels step by step. And a tree-like approach that iteratively segments the initial bins via binary splits. Both procedures merge, respectively split, bins based on similar weight of evidence (WOE) values and stop via an information value (IV) based criteria. The package can be used with single variables or an entire data frame. It provides flexible tools for exploring different binning solutions and for deploying them to (new) data.
The wavelet-based variance transformation method is used for system modelling and prediction. It refines predictor spectral representation using Wavelet Theory, which leads to improved model specifications and prediction accuracy. Details of methodologies used in the package can be found in Jiang, Z., Sharma, A., & Johnson, F. (2020) <doi:10.1029/2019WR026962>, Jiang, Z., Rashid, M. M., Johnson, F., & Sharma, A. (2020) <doi:10.1016/j.envsoft.2020.104907>, and Jiang, Z., Sharma, A., & Johnson, F. (2021) <doi:10.1016/J.JHYDROL.2021.126816>.
Descriptive statistics for large data tend to be low resolution on the tails. Whisker Odds generate a table of descriptive statistics for large data. This is the same as letter-values, but with an alternative naming of depths which allow for depths beyond 26. For a reference to letter-values see Heike Hofmann and Hadley Wickham and Karen Kafadar (2017) <doi:10.1080/10618600.2017.1305277>.
The distributions of the weight of evidence (log Bayes factor) favouring case over noncase status in a test dataset (or test folds generated by cross-validation) can be used to quantify the performance of a diagnostic test (McKeigue (2019), <doi:10.1177/0962280218776989>). The package can be used with any test dataset on which you have observed case-control status and have computed prior and posterior probabilities of case status using a model learned on a training dataset. To quantify how the predictor will behave as a risk stratifier, the quantiles of the distributions of weight of evidence in cases and controls can be calculated and plotted.
Computes Bayesian wavelet shrinkage credible intervals for nonparametric regression. The method uses cumulants to derive Bayesian credible intervals for wavelet regression estimates. The first four cumulants of the posterior distribution of the estimates are expressed in terms of the observed data and integer powers of the mother wavelet functions. These powers are closely approximated by linear combinations of wavelet scaling functions at an appropriate finer scale. Hence, a suitable modification of the discrete wavelet transform allows the posterior cumulants to be found efficiently for any data set. Johnson transformations then yield the credible intervals themselves. Barber, S., Nason, G.P. and Silverman, B.W. (2002) <doi:10.1111/1467-9868.00332>.
R clients to the Web of Science and InCites <https://clarivate.com/products/data-integration/> APIs, which allow you to programmatically download publication and citation data indexed in the Web of Science and InCites databases.
This package provides a client for the WebDriver API'. It allows driving a (probably headless) web browser, and can be used to test web applications, including Shiny apps. In theory it works with any WebDriver implementation, but it was only tested with PhantomJS'.
This package provides functions to calculate the Water Deficit Index (WDI) and the Evaporative Fraction (EF) using geospatial raster data such as fractional vegetation cover (FVC) and surface-air temperature difference (TS-TA). The package automates regression-based edge fitting and produces continuous spatial maps of surface moisture and evaporative dynamics.
This package performs 1, 2 and 3D real and complex-valued wavelet transforms, nondecimated transforms, wavelet packet transforms, nondecimated wavelet packet transforms, multiple wavelet transforms, complex-valued wavelet transforms, wavelet shrinkage for various kinds of data, locally stationary wavelet time series, nonstationary multiscale transfer function modeling, density estimation.
This package provides a flexible method for modeling cumulative effects of time-varying exposures, weighted according to their relative proximity in time, and represented by time-dependent covariates. The current implementation estimates the weight function in the Cox proportional hazards model. The function that assigns weights to doses taken in the past is estimated using cubic regression splines.
This package contains functions for computing and plotting discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transforms (MODWT), as well as their inverses. Additionally, it contains functionality for computing and plotting wavelet transform filters that are used in the above decompositions as well as multiresolution analyses.