Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
For multivariate datasets, this function enables the estimation of missing data using the Weighted AVERage of all possible Regressions using the data available.
Computes Bayesian wavelet shrinkage credible intervals for nonparametric regression. The method uses cumulants to derive Bayesian credible intervals for wavelet regression estimates. The first four cumulants of the posterior distribution of the estimates are expressed in terms of the observed data and integer powers of the mother wavelet functions. These powers are closely approximated by linear combinations of wavelet scaling functions at an appropriate finer scale. Hence, a suitable modification of the discrete wavelet transform allows the posterior cumulants to be found efficiently for any data set. Johnson transformations then yield the credible intervals themselves. Barber, S., Nason, G.P. and Silverman, B.W. (2002) <doi:10.1111/1467-9868.00332>.
This package provides functions aiming to facilitate the analysis of the structure of animal acoustic signals in R'. warbleR makes use of the basic sound analysis tools from the packages tuneR and seewave', and offers new tools for exploring and quantifying acoustic signal structure. The package allows to organize and manipulate multiple sound files, create spectrograms of complete recordings or individual signals in different formats, run several measures of acoustic structure, and characterize different structural levels in acoustic signals (Araya-Salas et al 2016 <doi:10.1111/2041-210X.12624>).
The wavelet-based quantile mapping (WQM) technique is designed to correct biases in spatio-temporal precipitation forecasts across multiple time scales. The WQM method effectively enhances forecast accuracy by generating an ensemble of precipitation forecasts that account for uncertainties in the prediction process. For a comprehensive overview of the methodologies employed in this package, please refer to Jiang, Z., and Johnson, F. (2023) <doi:10.1029/2022EF003350>. The package relies on two packages for continuous wavelet transforms: WaveletComp', which can be installed automatically, and wmtsa', which is optional and available from the CRAN archive <https://cran.r-project.org/src/contrib/Archive/wmtsa/>. Users need to manually install wmtsa from this archive if they prefer to use wmtsa based decomposition.
This package provides data from the United Nation's World Population Prospects 2015.
It proposes a novel variable selection approach in classification problem that takes into account the correlations that may exist between the predictors of the design matrix in a high-dimensional logistic model. Our approach consists in rewriting the initial high-dimensional logistic model to remove the correlation between the predictors and in applying the generalized Lasso criterion.
This package performs Wasserstein projections from the predictive distributions of any model into the space of predictive distributions of linear models. We utilize L1 penalties to also reduce the complexity of the model space. This package employs the methods as described in Dunipace, Eric and Lorenzo Trippa (2020) <doi:10.48550/arXiv.2012.09999>.
Spatial data are generally auto-correlated, meaning that if two units selected are close to each other, then it is likely that they share the same properties. For this reason, when sampling in the population it is often needed that the sample is well spread over space. A new method to draw a sample from a population with spatial coordinates is proposed. This method is called wave (Weakly Associated Vectors) sampling. It uses the less correlated vector to a spatial weights matrix to update the inclusion probabilities vector into a sample. For more details see Raphaël Jauslin and Yves Tillé (2019) <doi:10.1007/s13253-020-00407-1>.
Fits the combination of Wavelet-GARCH model for time series forecasting using algorithm by Paul (2015) <doi:10.3233/MAS-150328>.
Applies the item weighting method from Kilic & Dogan (2019) <doi:10.21031/epod.516057>. To improve construct validity, this method re-computes scores by utilizing the item discrimination index in conjunction with a condition established upon person ability and item difficulty.
Implementation of the methodologies described in 1) Alexander Petersen, Xi Liu and Afshin A. Divani (2021) <doi:10.1214/20-aos1971>, including global F tests, partial F tests, intrinsic Wasserstein-infinity bands and Wasserstein density bands, and 2) Chao Zhang, Piotr Kokoszka and Alexander Petersen (2022) <doi:10.1111/jtsa.12590>, including estimation, prediction, and inference of the Wasserstein autoregressive models.
Allows users to create weighted confusion matrices and accuracy metrics that help with the model selection process for classification problems, where distance from the correct category is important. The package includes several weighting schemes which can be parameterized, as well as custom configuration options. Furthermore, users can decide whether they wish to positively or negatively affect the accuracy score as a result of applying weights to the confusion matrix. Functions are included to calculate accuracy metrics for imbalanced data. Finally, wconf integrates well with the caret package, but it can also work standalone when provided data in matrix form. References: Kuhn, M. (2008) "Building Perspective Models in R Using the caret Package" <doi:10.18637/jss.v028.i05> Monahov, A. (2021) "Model Evaluation with Weighted Threshold Optimization (and the mewto R package)" <doi:10.2139/ssrn.3805911> Monahov, A. (2024) "Improved Accuracy Metrics for Classification with Imbalanced Data and Where Distance from the Truth Matters, with the wconf R Package" <doi:10.2139/ssrn.4802336> Starovoitov, V., Golub, Y. (2020). New Function for Estimating Imbalanced Data Classification Results. Pattern Recognition and Image Analysis, 295â 302 Van de Velden, M., Iodice D'Enza, A., Markos, A., Cavicchia, C. (2023) "A general framework for implementing distances for categorical variables" <doi:10.48550/arXiv.2301.02190>.
This package provides tools for writing and debugging R code. Provides: %.>% dot-pipe (an S3 configurable pipe), unpack/to (R style multiple assignment/return), build_frame()'/'draw_frame() ('data.frame example tools), qc() (quoting concatenate), := (named map builder), let() (converts non-standard evaluation interfaces to parametric standard evaluation interfaces, inspired by gtools::strmacro() and base::bquote()'), and more.
This package provides a framework for developing n-gram models for text prediction. It provides data cleaning, data sampling, extracting tokens from text, model generation, model evaluation and word prediction. For information on how n-gram models work we referred to: "Speech and Language Processing" <https://web.archive.org/web/20240919222934/https%3A%2F%2Fweb.stanford.edu%2F~jurafsky%2Fslp3%2F3.pdf>. For optimizing R code and using R6 classes we referred to "Advanced R" <https://adv-r.hadley.nz/r6.html>. For writing R extensions we referred to "R Packages", <https://r-pkgs.org/index.html>.
Monetary valuation of wood in German forests (stumpage values), including estimations of harvest quantities, wood revenues, and harvest costs. The functions are sensitive to tree species, mean diameter of the harvested trees, stand quality, and logging method. The functions include estimations for the consequences of disturbances on revenues and costs. The underlying assortment tables are taken from Offer and Staupendahl (2018) with corresponding functions for salable and skidded volume derived in Fuchs et al. (2023). Wood revenue and harvest cost functions were taken from v. Bodelschwingh (2018). The consequences of disturbances refer to Dieter (2001), Moellmann and Moehring (2017), and Fuchs et al. (2022a, 2022b). For the full references see documentation of the functions, package README, and Fuchs et al. (2023). Apart from Dieter (2001) and Moellmann and Moehring (2017), all functions and factors are based on data from HessenForst, the forest administration of the Federal State of Hesse in Germany.
Introduce weights into Ordered Weighted Averages and extend bivariate means based on n-ary tree construction. Please refer to the following: G. Beliakov, H. Bustince, and T. Calvo (2016, ISBN: 978-3-319-24753-3), G. Beliakov(2018) <doi:10.1002/int.21913>, G. Beliakov, J.J. Dujmovic (2016) <doi:10.1016/j.ins.2015.10.040>, J.J. Dujmovic and G. Beliakov (2017) <doi:10.1002/int.21828>.
Shinohara (2014) <doi:10.1016/j.nicl.2014.08.008> introduced WhiteStripe', an intensity-based normalization of T1 and T2 images, where normal appearing white matter performs well, but requires segmentation. This method performs white matter mean and standard deviation estimates on data that has been rigidly-registered to the MNI template and uses histogram-based methods.
Book is "Linear Mixed Models: A Practical Guide Using Statistical Software" published in 2006 by Chapman Hall / CRC Press.
Within-subject mediation analysis using structural equation modeling. Examine how changes in an outcome variable between two conditions are mediated through one or more variables. Supports within-subject mediation analysis using the lavaan package by Rosseel (2012) <doi:10.18637/jss.v048.i02>, and extends Monte Carlo confidence interval estimation to missing data scenarios using the semmcci package by Pesigan and Cheung (2023) <doi:10.3758/s13428-023-02114-4>.
This package provides a toolkit to detect clusters from distance matrices. The distance matrices are assumed to be calculated between the cells of multiple animals ('Caenorhabditis elegans') from input time-series matrices. Some functions for generating distance matrices, performing clustering, evaluating the clustering, and visualizing the results of clustering and evaluation are available. We're also providing the download function to retrieve the calculated distance matrices from figshare <https://figshare.com>.
Scrape lake metadata tables from Wikipedia <https://www.wikipedia.org/>.
Color palettes taken from the landscapes and cities of Washington state. Colors were extracted from a set of photographs, and then combined to form a set of continuous and discrete palettes. Continuous palettes were designed to be perceptually uniform, while discrete palettes were chosen to maximize contrast at several different levels of overall brightness and saturation. Each palette has been evaluated to ensure colors are distinguishable by colorblind people.
This package provides function, wget_set(), to change the method (default to wget -c') using in download.file(). Using wget -c allowing continued downloading, which is especially useful for slow internet connection and for downloading large files. User can run wget_unset() to restore previous setting.
Fast computation of Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) for weighted binary classification problems (weights are example-specific cost values).