Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Download and plot education specific demographic data from the Wittgenstein Centre for Demography and Human Capital Data Explorer <http://dataexplorer.wittgensteincentre.org/>.
The Wavelet Decomposition followed by Random Forest Regression (RF) models have been applied for time series forecasting. The maximum overlap discrete wavelet transform (MODWT) algorithm was chosen as it works for any length of the series. The series is first divided into training and testing sets. In each of the wavelet decomposed series, the supervised machine learning approach namely random forest was employed to train the model. This package also provides accuracy metrics in the form of Root Mean Square Error (RMSE) and Mean Absolute Prediction Error (MAPE). This package is based on the algorithm of Ding et al. (2021) <DOI: 10.1007/s11356-020-12298-3>.
Heuristic methods to solve the routing problems in a warehouse management. Package includes several heuristics such as the Midpoint, Return, S-Shape and Semi-Optimal Heuristics for designation of the pickerâ s route in order picking. The heuristics aim to provide the acceptable travel distances while considering warehouse layout constraints such as aisles and shelves. It also includes implementation of the COPRAS (COmplex PRoportional ASsessment) method for supporting selection of locations to be visited by the picker in shared storage systems. The package is designed to facilitate more efficient warehouse routing and logistics operations. see: Bartholdi, J. J., Hackman, S. T. (2019). "WAREHOUSE & DISTRIBUTION SCIENCE. Release 0.98.1." The Supply Chain & Logistics Institute. H. Milton Stewart School of Industrial and Systems Engineering. Georgia Institute of Technology. <https://www.warehouse-science.com/book/editions/wh-sci-0.98.1.pdf>.
This package provides a tool to fit and compare the wind turbine power curves with successful curve fitting techniques. Facilitates to examine and compare the performance of a user-defined power curve fitting techniques. Also, provide features to generate power curve discrete points from a graphical power curves. Data on the power curves of the wind turbine from major manufacturers are provided.
Imports WhatsApp chat logs and parses them into a usable dataframe object. The parser works on chats exported from Android or iOS phones and on Linux, macOS and Windows. The parser has multiple options for extracting smileys and emojis from the messages, extracting URLs and domains from the messages, extracting names and types of sent media files from the messages, extracting timestamps from messages, extracting and anonymizing author names from messages. Can be used to create anonymized versions of data.
Select data analysis plots, under a standardized calling interface implemented on top of ggplot2 and plotly'. Plots of interest include: ROC', gain curve, scatter plot with marginal distributions, conditioned scatter plot with marginal densities, box and stem with matching theoretical distribution, and density with matching theoretical distribution.
This package provides automated downloading, parsing and formatting of weather data for Australia through API endpoints provided by the Department of Primary Industries and Regional Development (DPIRD) of Western Australia and by the Science and Technology Division of the Queensland Government's Department of Environment and Science (DES). As well as the Bureau of Meteorology (BOM) of the Australian government precis and coastal forecasts, and downloading and importing radar and satellite imagery files. DPIRD weather data are accessed through public APIs provided by DPIRD, <https://www.dpird.wa.gov.au/online-tools/apis/>, providing access to weather station data from the DPIRD weather station network. Australia-wide weather data are based on data from the Australian Bureau of Meteorology (BOM) data and accessed through SILO (Scientific Information for Land Owners) Jeffrey et al. (2001) <doi:10.1016/S1364-8152(01)00008-1>. DPIRD data are made available under a Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU) license <https://creativecommons.org/licenses/by/3.0/au/deed.en>. SILO data are released under a Creative Commons Attribution 4.0 International licence (CC BY 4.0) <https://creativecommons.org/licenses/by/4.0/>. BOM data are (c) Australian Government Bureau of Meteorology and released under a Creative Commons (CC) Attribution 3.0 licence or Public Access Licence (PAL) as appropriate, see <http://www.bom.gov.au/other/copyright.shtml> for further details.
The german Wikibook "GNU R" introduces R to new users. This package is a collection of functions and datas used in the german WikiBook "GNU R".
This package provides a wavelet-based LSTM model is a type of neural network architecture that uses wavelet technique to pre-process the input data before passing it through a Long Short-Term Memory (LSTM) network. The wavelet-based LSTM model is a powerful approach that combines the benefits of wavelet analysis and LSTM networks to improve the accuracy of predictions in various applications. This package has been developed using the algorithm of Anjoy and Paul (2017) and Paul and Garai (2021) <DOI:10.1007/s00521-017-3289-9> <doi:10.1007/s00500-021-06087-4>.
Converts weekly data to monthly data. Users can use three types of week formats: ISO week, epidemiology week (epi week) and calendar date.
Evaluation of prediction performance of smaller regions of spectra for Chemometrics. Segmentation of spectra, evolving dimensions regions and sliding windows as selection methods. Election of the best model among those computed based on error metrics. Chen et al.(2017) <doi:10.1007/s00216-017-0218-9>.
Post-construction fatality monitoring studies at wind facilities are based on data from searches for bird and bat carcasses in plots beneath turbines. Bird and bat carcasses can fall outside of the search plot. Bird and bat carcasses from wind turbines often fall outside of the searched area. To compensate, area correction (AC) estimations are calculated to estimate the percentage of fatalities that fall within the searched area versus those that fall outside of it. This package provides two likelihood based methods and one physics based method (Hull and Muir (2010) <doi:10.1080/14486563.2010.9725253>, Huso and Dalthorp (2014) <doi:10.1002/jwmg.663>) to estimate the carcass fall distribution. There are also functions for calculating the proportion of area searched within one unit annuli, log logistic distribution functions, and truncated distribution functions.
Collects several classical word pools used most often to provide lists of words in psychological studies of learning and memory. It provides a simple function, pickList for selecting random samples of words within given ranges.
Toolkit to support and perform discrete event simulations with and without resource constraints in the context of health technology assessments (HTA). The package focuses on cost-effectiveness modelling and aims to be submission-ready to relevant HTA bodies in alignment with NICE TSD 15 <https://sheffield.ac.uk/nice-dsu/tsds/patient-level-simulation>. More details an examples can be found in the package website <https://jsanchezalv.github.io/WARDEN/>.
Dynamic interaction refers to spatial-temporal associations in the movements of two (or more) animals. This package provides tools for calculating a suite of indices used for quantifying dynamic interaction with wildlife telemetry data. For more information on each of the methods employed see the references within. The package (as of version >= 0.3) also has new tools for automating contact analysis in large tracking datasets. The package (as of version 1.0) uses the move2 class of objects for working with tracking dataset.
Four filters have been chosen namely haar', c6', la8', and bl14 (Kindly refer to wavelets in CRAN repository for more supported filters). Levels of decomposition are 2, 3, 4, etc. up to maximum decomposition level which is ceiling value of logarithm of length of the series base 2. For each combination two models are run separately. Results are stored in input'. First five metrics are expected to be minimum and last three metrics are expected to be maximum for a model to be considered good. Firstly, every metric value (among first five) is searched in every columns and minimum values are denoted as MIN and other values are denoted as NA'. Secondly, every metric (among last three) is searched in every columns and maximum values are denoted as MAX and other values are denoted as NA'. output contains the similar number of rows (which is 8) and columns (which is number filter-level combinations) as of input'. Values in output are corresponding NA', MIN or MAX'. Finally, the column containing minimum number of NA values is denoted as the best ('FL'). In special case, if two columns having equal NA', it has been checked among these two columns which one is having least NA in first five rows and has been inferred as the best. FL_metrics_values are the corresponding metrics values. WARIGAANbest is the data frame (dimension: 1*8) containing different metrics of the best filter-level combination. More details can be found in Garai and others (2023) <doi:10.13140/RG.2.2.11977.42087>.
The distributions of the weight of evidence (log Bayes factor) favouring case over noncase status in a test dataset (or test folds generated by cross-validation) can be used to quantify the performance of a diagnostic test (McKeigue (2019), <doi:10.1177/0962280218776989>). The package can be used with any test dataset on which you have observed case-control status and have computed prior and posterior probabilities of case status using a model learned on a training dataset. To quantify how the predictor will behave as a risk stratifier, the quantiles of the distributions of weight of evidence in cases and controls can be calculated and plotted.
It shows the connections between selected clusters from the latest time point and the clusters from all the previous time points. The transition matrices between time point t and t+1 are obtained from Waddington-OT analysis <https://github.com/ScialdoneLab/WOTPLY>.
Import WIG data into R in long format.
This package provides a multivariate weather generator for daily climate variables based on weather-states (Flecher et al. (2010) <doi:10.1029/2009WR008098>). It uses a Markov chain for modeling the succession of weather states. Conditionally to the weather states, the multivariate variables are modeled using the family of Complete Skew-Normal distributions. Parameters are estimated on measured series. Must include the variable Rain and can accept as many other variables as desired.
Spatial data are generally auto-correlated, meaning that if two units selected are close to each other, then it is likely that they share the same properties. For this reason, when sampling in the population it is often needed that the sample is well spread over space. A new method to draw a sample from a population with spatial coordinates is proposed. This method is called wave (Weakly Associated Vectors) sampling. It uses the less correlated vector to a spatial weights matrix to update the inclusion probabilities vector into a sample. For more details see Raphaël Jauslin and Yves Tillé (2019) <doi:10.1007/s13253-020-00407-1>.
This package provides inference for the Wilcoxon-Mann-Whitney test under the null hypothesis H0: AUC = 0.5 for continuous, discrete or mixed random variables. Traditional implementations test H0: F = G, which is inappropriately broad and leads to erroneous inferences. Methods are described in M. Grendar (2025) "Wilcoxon-Mann-Whitney Test of No Group Discrimination" <doi:10.48550/arXiv.2511.20308>.
Calculates the WEGE (Weighted Endemism including Global Endangerment index) index for a particular area. Additionally it also calculates rasters of KBA's (Key Biodiversity Area) criteria (A1a, A1b, A1e, and B1), Weighted endemism (WE), the EDGE (Evolutionarily Distinct and Globally Endangered) score, Evolutionary Distinctiveness (ED) and Extinction risk (ER). Farooq, H., Azevedo, J., Belluardo F., Nanvonamuquitxo, C., Bennett, D., Moat, J., Soares, A., Faurby, S. & Antonelli, A. (2020) <doi:10.1101/2020.01.17.910299>.
This package provides tools for a wavelet-based approach to analyzing spatial synchrony, principally in ecological data. Some tools will be useful for studying community synchrony. See, for instance, Sheppard et al (2016) <doi: 10.1038/NCLIMATE2991>, Sheppard et al (2017) <doi: 10.1051/epjnbp/2017000>, Sheppard et al (2019) <doi: 10.1371/journal.pcbi.1006744>.