Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allow users to obtain clean and tidy football (soccer) game, team and player data. Data is collected from a number of popular sites, including FBref', transfer and valuations data from Transfermarkt'<https://www.transfermarkt.com/> and shooting location and other match stats data from Understat'<https://understat.com/> and fotmob'<https://www.fotmob.com/>. It gives users the ability to access data more efficiently, rather than having to export data tables to files before being able to complete their analysis.
Graphical data analysis of accelerated life tests. Methods derived from Wayne Nelson (1990, ISBN: 9780471522775), William Q. Meeker and Lois A. Escobar (1998, ISBN: 1-471-14328-6).
Calculates the water balance of starch potatoes from Normalized Distance Vegetation Index (NDVI) images, German Weather Service (DWD) reference evapotranspiration, German Weather Service RADOLAN precipitation data and irrigation information. For more details see Piernicke et al. (2025) <doi:10.3390/rs17183227>.
Time series outlier detection with non parametric test. This is a new outlier detection methodology (washer): efficient for time saving elaboration and implementation procedures, adaptable for general assumptions and for needing very short time series, reliable and effective as involving robust non parametric test. You can find two approaches: single time series (a vector) and grouped time series (a data frame). For other informations: Andrea Venturini (2011) Statistica - Universita di Bologna, Vol.71, pp.329-344. For an informal explanation look at R-bloggers on web.
Create dense vector representation of words and documents using quanteda'. Currently implements Word2vec (Mikolov et al., 2013) <doi:10.48550/arXiv.1310.4546> and Latent Semantic Analysis (Deerwester et al., 1990) <doi:10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9>.
Weighted descriptive statistics is the discipline of quantitatively describing the main features of real-valued fuzzy data which usually given from a fuzzy population. One can summarize this special kind of fuzzy data numerically or graphically using this package. To interpret some of the properties of one or several sets of real-valued fuzzy data, numerically summarize is possible by some weighted statistics which are designed in this package such as mean, variance, covariance and correlation coefficent. Also, graphically interpretation can be given by weighted histogram and weighted scatter plot using this package to describe properties of real-valued fuzzy data set.
This package provides a set of utility function to prevent the spread of utility scripts in W4M (Workflow4Metabolomics) tools, and centralize them in a single package. To note, some are meant to be replaced by the use of dedicated packages in the future, like the parse_args() function: it is here only to prepare the ground for more global changes in W4M scripts and tools. This package is used by part of the W4M Galaxy modules, some of them being available on the community-maintained GitHub repository for Metabolomics Galaxy tools <https://github.com/workflow4metabolomics/tools-metabolomics>. See Delporte et al (2025) <doi:10.1002/cpz1.70095> for more details.
This package implements various win ratio methodologies for composite endpoints of death and non-fatal events, including the (stratified) proportional win-fractions (PW) regression models (Mao and Wang, 2020 <doi:10.1111/biom.13382>), (stratified) two-sample tests with possibly recurrent nonfatal event, and sample size calculation for standard win ratio test (Mao et al., 2021 <doi:10.1111/biom.13501>).
Lets you temporarily execute an expression or a local block with a different here() root in the here package. This is useful for sourcing code in other projects which expect the root directory of here() to be the project directory of those projects. This may be the case with git submodules for example.
Robust and reliable functions to return informative outputs to console with the run or source location of a command. This can be from the RScript'/R terminal commands or RStudio console, source editor, Rmarkdown document and a Shiny application.
Obtain information on peak flow data from the National River Flow Archive (NRFA) in the United Kingdom, either from the Peak Flow Dataset files <https://nrfa.ceh.ac.uk/data/peak-flow-dataset> once these have been downloaded to the user's computer or using the NRFA's API. These files are in a format suitable for direct use in the WINFAP software, hence the name of the package.
This package provides functions that allow for accessing domains and a number of search engines.
Evaluation of alternatives based on multiple criteria using weighted technique for Order preference by similarity to an ideal solution method. Reference: Hwang CL. (1981, ISBN:978-3-540-10558-9).
Estimates the standard and weighted Elo (WElo, Angelini et al., 2022 <doi:10.1016/j.ejor.2021.04.011>) rates. The current version provides Elo and WElo rates for tennis, according to different systems of weights (games or sets) and scale factors (constant, proportional to the number of matches, with more weight on Grand Slam matches or matches played on a specific surface). Moreover, the package gives the possibility of estimating the (bootstrap) standard errors for the rates. Finally, the package includes betting functions that automatically select the matches on which place a bet.
This package provides a comprehensive data analysis framework for NIH-funded research that streamlines workflows for both data cleaning and preparing and modifying NIH Data Archive ('NDA') data structures and submission templates. Provides unified access to multiple data sources ('REDCap', MongoDB', Qualtrics', SQL', ORACLE') through interfaces to their APIs, with specialized functions for data cleaning, filtering, merging, and parsing. Features automatic validation, field harmonization, and memory-aware processing to enhance reproducibility in multi-site collaborative research as described in Mittal et al. (2021) <doi:10.20900/jpbs.20210011>.
Supports systematic scrutiny, modification, and integration of data. The function status() counts rows that have missing values in grouping columns (returned by na() ), have non-unique combinations of grouping columns (returned by dup() ), and that are not locally sorted (returned by unsorted() ). Functions enumerate() and itemize() give sorted unique combinations of columns, with or without occurrence counts, respectively. Function ignore() drops columns in x that are present in y, and informative() drops columns in x that are entirely NA; constant() returns values that are constant, given a key. Data that have defined unique combinations of grouping values behave more predictably during merge operations.
This package provides a convenient data set, a set of helper functions, and a benchmark function for economically (profit) driven wind farm layout optimization. This enables researchers in the field of the NP-hard (non-deterministic polynomial-time hard) problem of wind farm layout optimization to focus on their optimization methodology contribution and also provides a realistic benchmark setting for comparability among contributions. See Croonenbroeck, Carsten & Hennecke, David (2020) <doi:10.1016/j.energy.2020.119244>.
The main purpose of waterquality is to quickly and easily convert satellite-based reflectance imagery into one or many well-known water quality algorithms designed for the detection of harmful algal blooms or the following pigment proxies: chlorophyll-a, blue-green algae (phycocyanin), and turbidity. Johansen et al. (2019) <doi:10.21079/11681/35053>.
This package provides a framework for developing n-gram models for text prediction. It provides data cleaning, data sampling, extracting tokens from text, model generation, model evaluation and word prediction. For information on how n-gram models work we referred to: "Speech and Language Processing" <https://web.archive.org/web/20240919222934/https%3A%2F%2Fweb.stanford.edu%2F~jurafsky%2Fslp3%2F3.pdf>. For optimizing R code and using R6 classes we referred to "Advanced R" <https://adv-r.hadley.nz/r6.html>. For writing R extensions we referred to "R Packages", <https://r-pkgs.org/index.html>.
Shows the relationship between an independent and dependent variable through Weight of Evidence and Information Value.
This package performs Wilcoxon-Mann-Whitney test in the presence of missing data with controlled Type I error regardless of the values of missing data.
Estimation of observation-specific weights for incomplete longitudinal data and bootstrap procedure for weighted quantile regressions. See Jacqmin-Gadda, Rouanet, Mba, Philipps, Dartigues (2020) for details <doi:10.1177/0962280220909986>.
This package provides a collection of color palettes that were extracted from various books on my sons(Wren) bookshelf. Also included are a number of functions and wrappers to utilize them, as well as to subset the palettes to desired number/specific colors.
Fetch and clean data from the World Database on Protected Areas (WDPA) and the World Database on Other Effective Area-Based Conservation Measures (WDOECM). Data is obtained from Protected Planet <https://www.protectedplanet.net/en>. To augment data cleaning procedures, users can install the prepr R package (available at <https://github.com/prioritizr/prepr>). For more information on this package, see Hanson (2022) <doi:10.21105/joss.04594>.