Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a probabilistic approach to time series forecasting combining XGBoost regression with conformal inference methods. The package provides functionality for generating predictive distributions, evaluating uncertainty, and optimizing hyperparameters using Bayesian, coarse-to-fine, or random search strategies.
Extremely fast hashing of R objects using xxHash'. R objects are hashed via the standard serialization mechanism in R. Raw byte vectors and strings can be handled directly for compatibility with hashes created on other systems. This implementation is a wrapper around the xxHash C library which is available from <https://github.com/Cyan4973/xxHash>.
An R interface to the OpenPyXL Python library to create native Excel charts and work with Microsoft Excel files.
This collection of gene representation-independent functions implements the population layer of extended evolutionary and genetic algorithms and its support. The population layer consists of functions for initializing, logging, observing, evaluating a population of genes, as well as of computing the next population. For parallel evaluation of a population of genes 4 execution models - named Sequential, MultiCore, FutureApply, and Cluster - are provided. They are implemented by configuring the lapply() function. The execution model FutureApply can be externally configured as recommended by Bengtsson (2021) <doi:10.32614/RJ-2021-048>. Configurable acceptance rules and cooling schedules (see Kirkpatrick, S., Gelatt, C. D. J, and Vecchi, M. P. (1983) <doi:10.1126/science.220.4598.671>, and Aarts, E., and Korst, J. (1989, ISBN:0-471-92146-7) offer simulated annealing or greedy randomized approximate search procedure elements. Adaptive crossover and mutation rates depending on population statistics generalize the approach of Stanhope, S. A. and Daida, J. M. (1996, ISBN:0-18-201-031-7). For xega's architecture, see Geyer-Schulz, A. (2025) <doi:10.5445/IR/1000187255>.
This package provides tools to download and merge data files on sub-national conflict, violence and protests from <http://www.x-sub.org>.
XMRs combine X-Bar control charts and Moving Range control charts. These functions also will recalculate the reference lines when significant change has occurred.
This package provides a consistent interface for common feature importance methods as described in Ewald et al. (2024) <doi:10.1007/978-3-031-63797-1_22>, including permutation feature importance (PFI), conditional and relative feature importance (CFI, RFI), leave one covariate out (LOCO), and Shapley additive global importance (SAGE), as well as feature sampling mechanisms to support conditional importance methods.
The XML-RPC is a remote procedure call protocol based on XML'. The xmlrpc2 package is inspired by the XMLRPC package but uses the curl and xml2 packages instead RCurl and XML'.
Extras and extensions for xaringan slides. Navigate your slides with tile view. Make your slides editable, live! Announce slide changes with subtle tones. Animate slide transitions with animate.css'. Add tabbed panels to slides with panelset'. Use the Tachyons CSS utility toolkit for rapid slide development. Scribble on your slides. Add a copy button to your code chunks with clipboard'. Add a logo or top or bottom banner to every slide. Broadcast slides to stay in sync with remote viewers. Include yourself in your slides with webcam'. Plus a whole lot more!
Helps systematize and ease the process of building unit tests with the testthat package by providing tools for generating expectations.
The US Census Bureau provides a seasonal adjustment program now called X-13ARIMA-SEATS building on both earlier programs called X-11 and X-12 as well as the SEATS program by the Bank of Spain. The US Census Bureau offers both source and binary versions -- which this package integrates for use by other R packages.
Allows to provide live interpretations and explanations of statistical functions in R. These interpretations and explanations are shown when the explained function is called by the user. They can interact with the values of the explained function's actual results to offer relevant, meaningful insights. The xplain interpretations and explanations are based on an easy-to-use XML format that allows to include R code to interact with the returns of the explained function.
This package provides tools to build CDISC compliant data sets and check for CDISC compliance.
Institutional performance assessment remains a key challenge to a multitude of stakeholders. Existing indicators such as h-type indicators, g-type indicators, and many others do not reflect expertise of institutions that defines their research portfolio. The package offers functionality to compute and visualise two novel indices: the x-index and the xd-index. The x-index evaluates an institution's scholarly expertise within a specific discipline or field, while the xd-index provides a broader assessment of overall scholarly expertise considering an institution's publication pattern and strengths across coarse thematic areas. These indices offer a nuanced understanding of institutional research capabilities, aiding stakeholders in research management and resource allocation decisions. Lathabai, H.H., Nandy, A., and Singh, V.K. (2021) <doi:10.1007/s11192-021-04188-3>. Nandy, A., Lathabai, H.H., and Singh, V.K. (2023) <doi:10.5281/zenodo.8305585>. This package provides the h-, g-, x-, xd-indices, and their variants for use with standard format of Web of Science (WoS) scrapped datasets.
The circadian period of a time series data is predicted and the statistical significance of the periodicity are calculated using the chi-square periodogram.
Given the date column as an ascending entry, future errors are included in the sum of squares of error that should be minimized based on the number of steps and weights you determine. Thus, it is prevented that the variables affect each other's coefficients unrealistically.
Parse entire folders of non-rectangular xlsx files into a single rectangular and tidy data.frame based on a custom template file defining the column names of the output.
Supports a structured approach for exploring PKPD data <https://opensource.nibr.com/xgx/>. It also contains helper functions for enabling the modeler to follow best R practices (by appending the program name, figure name location, and draft status to each plot). In addition, it enables the modeler to follow best graphical practices (by providing a theme that reduces chart ink, and by providing time-scale, log-scale, and reverse-log-transform-scale functions for more readable axes). Finally, it provides some data checking and summarizing functions for rapidly exploring pharmacokinetics and pharmacodynamics (PKPD) datasets.
Grammatical evolution (see O'Neil, M. and Ryan, C. (2003,ISBN:1-4020-7444-1)) uses decoders to convert linear (binary or integer genes) into programs. In addition, automatic determination of codon precision with a limited rule choice bias is provided. For a recent survey of grammatical evolution, see Ryan, C., O'Neill, M., and Collins, J. J. (2018) <doi:10.1007/978-3-319-78717-6>.
An implementation of representation-dependent gene level operations for genetic algorithms with genes representing permutations: Initialization of genes, mutation, and crossover. The crossover operation provided is position-based crossover (Syswerda, G., Chap. 21 in Davis, L. (1991, ISBN:0-442-00173-8). For mutation, several variants are included: Order-based mutation (Syswerda, G., Chap. 21 in Davis, L. (1991, ISBN:0-442-00173-8), randomized Lin-Kernighan heuristics (Croes, G. A. (1958) <doi:10.1287/opre.6.6.791> and Lin, S. and Kernighan. B. W. (1973) <doi:10.1287/opre.21.2.498>), and randomized greedy operators. A random mix operator for mutation selects a mutation variant randomly.
This is a set of statistical quality control functions, that allows plotting control charts and its iterations, process capability for variable and attribute control, highlighting the xrs_gr() function, like a first iteration for variable chart, meanwhile the we_rules() function detects non random patterns in sample.
Computes robust association measures that do not presuppose linearity. The xi correlation (xicor) is based on cross correlation between ranked increments. The reference for the methods implemented here is Chatterjee, Sourav (2020) <arXiv:1909.10140> This package includes the Galton peas example.
Translates a BNF (Backus-Naur Form) specification of a context-free language into an R grammar object which consists of the start symbol, the symbol table, the production table, and a short production table. The short production table is non-recursive. The grammar object contains the file name from which it was generated (without a path). In addition, it provides functions to determine the type of a symbol (isTerminal() and isNonterminal()) and functions to access the production table (rules() and derives()). For the BNF specification, see Backus, John et al. (1962) "Revised Report on the Algorithmic Language ALGOL 60". (ALGOL60 standards page <http://www.algol60.org/2standards.htm>, html-edition <https://www.masswerk.at/algol60/report.htm>) A preprocessor for macros which expand to standard BNF is included. The grammar compiler is an extension of the APL2 implementation in Geyer-Schulz, Andreas (1997, ISBN:978-3-7908-0830-X).
Simple and efficient access to Yahoo Finance's screener API <https://finance.yahoo.com/research-hub/screener/> for querying and retrieval of financial data. The core functionality abstracts the complexities of interacting with Yahoo Finance APIs, such as session management, crumb and cookie handling, query construction, pagination, and JSON payload generation. This abstraction allows users to focus on filtering and retrieving data rather than managing API details. Use cases include screening across a range of security types including equities, mutual funds, ETFs, indices, and futures. The package supports advanced query capabilities, including logical operators, nested filters, and customizable payloads. It automatically handles pagination to ensure efficient retrieval of large datasets by fetching results in batches of up to 250 entries per request. Filters can be dynamically defined to accommodate a wide range of screening needs. The implementation leverages standard HTTP libraries to handle API interactions efficiently and provides support for both R and Python to ensure accessibility for a broad audience.