Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes the coverage correlation coefficient introduced in <doi:10.48550/arXiv.2508.06402> , a statistical measure that quantifies dependence between two random vectors by computing the union volume of data-centered hypercubes in a uniform space.
Autosimilarity curves, standardization of spatial extent, dissimilarity indexes that overweight rare species, phylogenetic and functional (pairwise and multisample) dissimilarity indexes and nestedness for phylogenetic, functional and other diversity metrics. The methods for phylogenetic and functional nestedness is described in Melo, Cianciaruso and Almeida-Neto (2014) <doi:10.1111/2041-210X.12185>. This should be a complement to available packages, particularly vegan'.
Fit composite Gaussian process (CGP) models as described in Ba and Joseph (2012) "Composite Gaussian Process Models for Emulating Expensive Functions", Annals of Applied Statistics. The CGP model is capable of approximating complex surfaces that are not second-order stationary. Important functions in this package are CGP, print.CGP, summary.CGP, predict.CGP and plotCGP.
This package provides a suite of computer model test functions that can be used to test and evaluate algorithms for Bayesian (also known as sequential) optimization. Some of the functions have known functional forms, however, most are intended to serve as black-box functions where evaluation requires running computer code that reveals little about the functional forms of the objective and/or constraints. The primary goal of the package is to provide users (especially those who do not have access to real computer models) a source of reproducible and shareable examples that can be used for benchmarking algorithms. The package is a living repository, and so more functions will be added over time. For function suggestions, please do contact the author of the package.
This package provides functions to analyze coarse data. Specifically, it contains functions to (1) fit parametric accelerated failure time models to interval-censored survival time data, and (2) estimate the case-fatality ratio in scenarios with under-reporting. This package's development was motivated by applications to infectious disease: in particular, problems with estimating the incubation period and the case fatality ratio of a given disease. Sample data files are included in the package. See Reich et al. (2009) <doi:10.1002/sim.3659>, Reich et al. (2012) <doi:10.1111/j.1541-0420.2011.01709.x>, and Lessler et al. (2009) <doi:10.1016/S1473-3099(09)70069-6>.
An R implementation of the algorithms described in Reingold and Dershowitz (4th ed., Cambridge University Press, 2018) <doi:10.1017/9781107415058>, allowing conversion between many different calendar systems. Cultural and religious holidays from several calendars can be calculated.
The analysis of conflicting claims arises when an amount has to be divided among a set of agents with claims that exceed what is available. A rule is a way of selecting a division among the claimants. This package computes the main rules introduced in the literature from ancient times to the present. The inventory of rules covers the proportional and the adjusted proportional rules, the constrained equal awards and the constrained equal losses rules, the constrained egalitarian, the Pinilesâ and the minimal overlap rules, the random arrival and the Talmud rules. Besides, the Dominguez and Thomson and the average-of-awards rules are also included. All of them can be found in the book by W. Thomson (2019), How to divide when there isn't enough. From Aristotle, the Talmud, and Maimonides to the axiomatics of resource allocation', except for the average-of-awards rule, introduced by Mirás Calvo et al. (2022), <doi:10.1007/s00355-022-01414-6>. In addition, graphical diagrams allow the user to represent, among others, the set of awards, the paths of awards, the schedules of awards of a rule, and some indexes. A good understanding of the similarities and differences between the rules is useful for better decision-making. Therefore, this package could be helpful to students, researchers, and managers alike. For a more detailed explanation of the package, see Mirás Calvo et al. (2023), <doi:10.1016/j.dajour.2022.100160>.
This package provides adaptive trend estimation, cycle detection, Fourier harmonic selection, bootstrap confidence intervals, change-point detection, and rolling-origin forecasting. Supports LOESS (Locally Estimated Scatterplot Smoothing), GAM (Generalized Additive Model), and GAMM (Generalized Additive Mixed Model), and automatically handles irregular sampling using the Lomb-Scargle periodogram. Methods implemented in this package are described in Cleveland et al. (1990) <doi:10.2307/2289548>, Wood (2017) <doi:10.1201/9781315370279>, and Scargle (1982) <doi:10.1086/160554>.
Cancer RADAR is a project which aim is to develop an infrastructure that allows quantifying the risk of cancer by migration background across Europe. This package contains a set of functions cancer registries partners should use to reshape 5 year-age group cancer incidence data into a set of summary statistics (see Boyle & Parkin (1991, ISBN:978-92-832-1195-2)) in lines with Cancer RADAR data protections rules.
This package provides a method for pattern discovery in weighted graphs as outlined in Thistlethwaite et al. (2021) <doi:10.1371/journal.pcbi.1008550>. Two use cases are achieved: 1) Given a weighted graph and a subset of its nodes, do the nodes show significant connectedness? 2) Given a weighted graph and two subsets of its nodes, are the subsets close neighbors or distant?
Automatic specification and estimation of reserve demand curves for central bank operations. The package can help to choose the best demand curve and identify additional explanatory variables. Various plot and predict options are included. For more details, see Chen et al. (2023) <https://www.imf.org/en/Publications/WP/Issues/2023/09/01/Modeling-the-Reserve-Demand-to-Facilitate-Central-Bank-Operations-538754>.
This package provides a standard test is observed on all specimens. We treat the second test (or sampled test) as being conducted on only a stratified sample of specimens. Verification Bias is this situation when the specimens for doing the second (sampled) test is not under investigator control. We treat the total sample as stratified two-phase sampling and use inverse probability weighting. We estimate diagnostic accuracy (category-specific classification probabilities; for binary tests reduces to specificity and sensitivity, and also predictive values) and agreement statistics (percent agreement, percent agreement by category, Kappa (unweighted), Kappa (quadratic weighted) and symmetry tests (reduces to McNemar's test for binary tests)). See: Katki HA, Li Y, Edelstein DW, Castle PE. Estimating the agreement and diagnostic accuracy of two diagnostic tests when one test is conducted on only a subsample of specimens. Stat Med. 2012 Feb 28; 31(5) <doi:10.1002/sim.4422>.
This package provides a collection of tools to easily analyze clinical data, including functions for correlation analysis, and statistical testing. The package facilitates the integration of clinical metadata with other omics layers, enabling exploration of quantitative variables. It also includes the utility for frequency matching samples across a dataset based on patient variables.
An R interface to Cheetah Grid', a high-performance JavaScript table widget. cheetahR allows users to render millions of rows in just a few milliseconds, making it an excellent alternative to other R table widgets. The package wraps the Cheetah Grid JavaScript functions and makes them readily available for R users. The underlying grid implementation is based on Cheetah Grid <https://github.com/future-architect/cheetah-grid>.
Procedures include Phillips (1995) FMVAR <doi:10.2307/2171721>, Kitamura and Phillips (1997) FMGMM <doi:10.1016/S0304-4076(97)00004-3>, Park (1992) CCR <doi:10.2307/2951679>, and so on. Tests with 1 or 2 structural breaks include Gregory and Hansen (1996) <doi:10.1016/0304-4076(69)41685-7>, Zivot and Andrews (1992) <doi:10.2307/1391541>, and Kurozumi (2002) <doi:10.1016/S0304-4076(01)00106-3>.
This package implements weighted estimation in Cox regression as proposed by Schemper, Wakounig and Heinze (Statistics in Medicine, 2009, <doi:10.1002/sim.3623>) and as described in Dunkler, Ploner, Schemper and Heinze (Journal of Statistical Software, 2018, <doi:10.18637/jss.v084.i02>). Weighted Cox regression provides unbiased average hazard ratio estimates also in case of non-proportional hazards. Approximated generalized concordance probability an effect size measure for clear-cut decisions can be obtained. The package provides options to estimate time-dependent effects conveniently by including interactions of covariates with arbitrary functions of time, with or without making use of the weighting option.
Given a non-linear model, calculate the local explanation. We purpose view the data space, explanation space, and model residuals as ensemble graphic interactive on a shiny application. After an observation of interest is identified, the normalized variable importance of the local explanation is used as a 1D projection basis. The support of the local explanation is then explored by changing the basis with the use of the radial tour <doi:10.32614/RJ-2020-027>; <doi:10.1080/10618600.1997.10474754>.
Interface to the Google Cloud Machine Learning Platform <https://cloud.google.com/vertex-ai>, which provides cloud tools for training machine learning models.
This package provides tools for creating and visualizing statistical process control charts. Control charts are used for monitoring measurement processes, such as those occurring in manufacturing. The objective is to monitor the history of such processes and flag outlying measurements: out-of-control signals. Montgomery, D. (2009, ISBN:978-0-470-16992-6) contains an extensive discussion of the methodology.
Balancing and rounding matrices subject to restrictions. Adjustment of matrices so that columns and rows add up to given vectors, rounding of a matrix while keeping the column and/or row totals, performing these by blocks...
This package provides tools for linear fitting with complex variables. Includes ordinary least-squares (zlm()) and robust M-estimation (rzlm()), and complex methods for oft used generics. Originally adapted from the rlm() functions of MASS and the lm() functions of stats'.
General functions for convolutions of data. Moving average, running median, and other filters are available. Bibliography regarding the functions can be found in the following text. Richard G. Brereton (2003) <ISBN:9780471489771>.
This package creates project specific directory and file templates that are written to a .Rprofile file. Upon starting a new R session, these templates can be used to streamline the creation of new directories that are standardized to the user's preferences and can include the initiation of a git repository, an RStudio R project, and project-local dependency management with the renv package.
This package provides a Shiny application to conduct comprehensive analysis of latent means including the examination of group equivalency, propensity score analysis, measurement invariance analysis, and assessment of latent mean differences of equivalent groups with invariant data. Group equivalency and propensity score analyses are implemented using the MatchIt package [Ho et al. (2011) <doi:10.18637/jss.v042.i08>], ensuring robust control for covariates. Structural equation modeling and invariance testing rely heavily on the lavaan package [Rosseel (2012) <doi:10.18637/jss.v048.i02>], providing a flexible and powerful modeling framework. The application also integrates modified functions from Hammack-Brown et al. (2021) <doi:10.1002/hrdq.21452> to support factor ratio testing and the list-and-delete procedure.