Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Comparison of two ROC curves through the methodology proposed by Ana C. Braga.
The Central Bank of the Republic of Turkey (CBRT) provides one of the most comprehensive time series databases on the Turkish economy. The CBRT package provides functions for accessing the CBRT's electronic data delivery system <https://evds2.tcmb.gov.tr/>. It contains the lists of all data categories and data groups for searching the available variables (data series). As of November 3, 2024, there were 40,826 variables in the dataset. The lists of data categories and data groups can be updated by the user at any time. A specific variable, a group of variables, or all variables in a data group can be downloaded at different frequencies using a variety of aggregation methods.
Employs a two-parameter family of distributions for modelling random variables on the (0, 1) interval by applying the cumulative distribution function (cdf) of one parent distribution to the quantile function of another.
Network meta-analysis and meta-regression (allows including up to three covariates) for individual participant data, aggregate data, and mixtures of both formats using the three-level hierarchical model. Each format can come from randomized controlled trials or non-randomized studies or mixtures of both. Estimates are generated in a Bayesian framework using JAGS. The implemented models are described by Hamza et al. 2023 <DOI:10.1002/jrsm.1619>.
Allows users to input their data, segmentation and function used for the segmentation (and additional arguments) and the package calculates the influence of the data on the changepoint locations, see Wilms et al. (2022) <doi:10.1080/10618600.2021.2000873>. Currently this can only be used with the changepoint package functions to identify changes, but we plan to extend this. There are options for different types of graphics to assess the influence.
Implementation of the ageâ periodâ cohort models for claim development presented in Pittarello G, Hiabu M, Villegas A (2025) â Replicating and Extending Chainâ Ladder via an Ageâ Periodâ Cohort Structure on the Claim Development in a Runâ Off Triangleâ <doi:10.1080/10920277.2025.2496725>.
Includes the 100 datasets simulated by Congreve and Lamsdell (2016) <doi:10.1111/pala.12236>, and analyses of the partition and quartet distance of reconstructed trees from the generative tree, as analysed by Smith (2019) <doi:10.1098/rsbl.2018.0632>.
Allows to generate colors from palettes defined in the colormap module of Node.js'. (see <https://github.com/bpostlethwaite/colormap> for more information). In total it provides 44 distinct palettes made from sequential and/or diverging colors. In addition to the pre defined palettes you can also specify your own set of colors. There are also scale functions that can be used with ggplot2'.
This package provides the basic functionality to interact with the Collatz conjecture. The parameterisation uses the same (P,a,b) notation as Conway's generalisations. Besides the function and reverse function, there is also functionality to retrieve the hailstone sequence, the "stopping time"/"total stopping time", or tree-graph. The only restriction placed on parameters is that both P and a can't be 0. For further reading, see <https://en.wikipedia.org/wiki/Collatz_conjecture>.
Analyze and compare conversations using various similarity measures including topic, lexical, semantic, structural, stylistic, sentiment, participant, and timing similarities. Supports both pairwise conversation comparisons and analysis of multiple dyads. Methods are based on established research: Topic modeling: Blei et al. (2003) <doi:10.1162/jmlr.2003.3.4-5.993>; Landauer et al. (1998) <doi:10.1080/01638539809545028>; Lexical similarity: Jaccard (1912) <doi:10.1111/j.1469-8137.1912.tb05611.x>; Semantic similarity: Salton & Buckley (1988) <doi:10.1016/0306-4573(88)90021-0>; Mikolov et al. (2013) <doi:10.48550/arXiv.1301.3781>; Pennington et al. (2014) <doi:10.3115/v1/D14-1162>; Structural and stylistic analysis: Graesser et al. (2004) <doi:10.1075/target.21131.ryu>; Sentiment analysis: Rinker (2019) <https://github.com/trinker/sentimentr>.
Allows clinicians to predict survival probabilities over the next two years for cystic fibrosis patients, based on the clinical prediction models published in Stanojevic et al. (2019) <doi:10.1183/13993003.00224-2019>.
Proposed by Harrell, the C index or concordance C, is considered an overall measure of discrimination in survival analysis between a survival outcome that is possibly right censored and a predictive-score variable, which can represent a measured biomarker or a composite-score output from an algorithm that combines multiple biomarkers. This package aims to statistically compare two C indices with right-censored survival outcome, which commonly arise from a paired design and thus resulting two correlated C indices.
Implementation of Tobit type I and type II families for censored regression using the mgcv package, based on methods detailed in Woods (2016) <doi:10.1080/01621459.2016.1180986>.
This package provides tools for extracting occurrences, assessing potential driving factors, predicting occurrences, and quantifying impacts of compound events in hydrology and climatology. Please see Hao Zengchao et al. (2019) <doi:10.1088/1748-9326/ab4df5>.
This package implements clustering techniques such as Proximus and Rock, utility functions for efficient computation of cross distances and data manipulation.
Easy way to draw chronological charts from tables, aiming to include an intuitive environment for anyone new to R. Includes ggplot2 geoms and theme for chronological charts.
Converts customer transaction data (ID, purchase date) into a R6 class called customer. The class stores various customer analytics calculations at the customer level. The package also contains functionality to convert data in the R6 class to data.frames that can serve as inputs for various customer analytics models.
An implementation of several functions for feature extraction in categorical time series datasets. Specifically, some features related to marginal distributions and serial dependence patterns can be computed. These features can be used to feed clustering and classification algorithms for categorical time series, among others. The package also includes some interesting datasets containing biological sequences. Practitioners from a broad variety of fields could benefit from the general framework provided by ctsfeatures'.
This software package provides Cox survival analysis for high-dimensional and multiblock datasets. It encompasses a suite of functions dedicated from the classical Cox regression to newest analysis, including Cox proportional hazards model, Stepwise Cox regression, and Elastic-Net Cox regression, Sparse Partial Least Squares Cox regression (sPLS-COX) incorporating three distinct strategies, and two Multiblock-PLS Cox regression (MB-sPLS-COX) methods. This tool is designed to adeptly handle high-dimensional data, and provides tools for cross-validation, plot generation, and additional resources for interpreting results. While references are available within the corresponding functions, key literature is mentioned below. Terry M Therneau (2024) <https://CRAN.R-project.org/package=survival>, Noah Simon et al. (2011) <doi:10.18637/jss.v039.i05>, Philippe Bastien et al. (2005) <doi:10.1016/j.csda.2004.02.005>, Philippe Bastien (2008) <doi:10.1016/j.chemolab.2007.09.009>, Philippe Bastien et al. (2014) <doi:10.1093/bioinformatics/btu660>, Kassu Mehari Beyene and Anouar El Ghouch (2020) <doi:10.1002/sim.8671>, Florian Rohart et al. (2017) <doi:10.1371/journal.pcbi.1005752>.
Unified interface for the estimation of causal networks, including the methods backShift (from package backShift'), bivariateANM (bivariate additive noise model), bivariateCAM (bivariate causal additive model), CAM (causal additive model) (from package CAM'; the package is temporarily unavailable on the CRAN repository; formerly available versions can be obtained from the archive), hiddenICP (invariant causal prediction with hidden variables), ICP (invariant causal prediction) (from package InvariantCausalPrediction'), GES (greedy equivalence search), GIES (greedy interventional equivalence search), LINGAM', PC (PC Algorithm), FCI (fast causal inference), RFCI (really fast causal inference) (all from package pcalg') and regression.
This package provides functions for performing experimental comparisons of algorithms using adequate sample sizes for power and accuracy. Implements the methodology originally presented in Campelo and Takahashi (2019) <doi:10.1007/s10732-018-9396-7> for the comparison of two algorithms, and later generalised in Campelo and Wanner (Submitted, 2019) <arxiv:1908.01720>.
Climate crop zoning based in minimum and maximum air temperature. The data used in the package are from TerraClimate dataset (<https://www.climatologylab.org/terraclimate.html>), but, it have been calibrated with automatic weather stations of National Meteorological Institute of Brazil. The climate crop zoning of this package can be run for all the Brazilian territory.
Provee un acceso conveniente a mas de 17 millones de registros de la base de datos del Censo 2017. Los datos fueron importados desde el DVD oficial del INE usando el Convertidor REDATAM creado por Pablo De Grande. Esta paquete esta documentado intencionalmente en castellano asciificado para que funcione sin problema en diferentes plataformas. (Provides convenient access to more than 17 million records from the Chilean Census 2017 database. The datasets were imported from the official DVD provided by the Chilean National Bureau of Statistics by using the REDATAM converter created by Pablo De Grande and in addition it includes the maps accompanying these datasets.).
This package provides functions designed to simulate data that conform to basic unidimensional IRT models (for now 3-parameter binary response models and graded response models) along with Post-Hoc CAT simulations of those models given various item selection methods, ability estimation methods, and termination criteria. See Wainer (2000) <doi:10.4324/9781410605931>, van der Linden & Pashley (2010) <doi:10.1007/978-0-387-85461-8_1>, and Eggen (1999) <doi:10.1177/01466219922031365> for more details.