Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Gives convenient access to publicly available police-recorded open crime data from large cities in the United States that are included in the Crime Open Database <https://osf.io/zyaqn/>.
Measuring child development starts by collecting responses to developmental milestones, such as "able to sit" or "says two words". There are many ways to combine such responses into summaries. The package bundles publicly available datasets with individual milestone data for children aged 0-5 years, with the aim of supporting the construction, evaluation, validation and interpretation of methodologies that aggregate milestone data into informative measures of child development.
Combining Univariate Association Test Results of Multiple Phenotypes for Detecting Pleiotropy.
Allow to run Cppcheck (<https://cppcheck.sourceforge.io/>) on C and C++ files with a R command or a RStudio addin. The report appears in the RStudio viewer pane as a formatted HTML file. It is also possible to get this report with a shiny application. Cppcheck can spot many error types and it can also give some recommendations on the code.
Classification using Richard A. Harshman's Parallel Factor Analysis-1 (Parafac) model or Parallel Factor Analysis-2 (Parafac2) model fit to a three-way or four-way data array. See Harshman and Lundy (1994): <doi:10.1016/0167-9473(94)90132-5>. Uses component weights from one mode of a Parafac or Parafac2 model as features to tune parameters for one or more classification methods via a k-fold cross-validation procedure. Allows for constraints on different tensor modes. Supports penalized logistic regression, support vector machine, random forest, feed-forward neural network, regularized discriminant analysis, and gradient boosting machine. Supports binary and multiclass classification. Predicts class labels or class probabilities and calculates multiple classification performance measures. Implements parallel computing via the parallel', doParallel', and doRNG packages.
Analyze and compare conversations using various similarity measures including topic, lexical, semantic, structural, stylistic, sentiment, participant, and timing similarities. Supports both pairwise conversation comparisons and analysis of multiple dyads. Methods are based on established research: Topic modeling: Blei et al. (2003) <doi:10.1162/jmlr.2003.3.4-5.993>; Landauer et al. (1998) <doi:10.1080/01638539809545028>; Lexical similarity: Jaccard (1912) <doi:10.1111/j.1469-8137.1912.tb05611.x>; Semantic similarity: Salton & Buckley (1988) <doi:10.1016/0306-4573(88)90021-0>; Mikolov et al. (2013) <doi:10.48550/arXiv.1301.3781>; Pennington et al. (2014) <doi:10.3115/v1/D14-1162>; Structural and stylistic analysis: Graesser et al. (2004) <doi:10.1075/target.21131.ryu>; Sentiment analysis: Rinker (2019) <https://github.com/trinker/sentimentr>.
This package provides a suite of functions for rapid and flexible analysis of codon usage bias. It provides in-depth analysis at the codon level, including relative synonymous codon usage (RSCU), tRNA weight calculations, machine learning predictions for optimal or preferred codons, and visualization of codon-anticodon pairing. Additionally, it can calculate various gene- specific codon indices such as codon adaptation index (CAI), effective number of codons (ENC), fraction of optimal codons (Fop), tRNA adaptation index (tAI), mean codon stabilization coefficients (CSCg), and GC contents (GC/GC3s/GC4d). It also supports both standard and non-standard genetic code tables found in NCBI, as well as custom genetic code tables.
This package infers the causal effect of an intervention on a multivariate response through the use of Multivariate Bayesian Structural Time Series models (MBSTS) as described in Menchetti & Bojinov (2020) <arXiv:2006.12269>. The package also includes functions for model building and forecasting.
Responsive and modern HTML card essentials for shiny applications and dashboards. This novel card component in Bootstrap provides a flexible and extensible content container with multiple variants and options for building robust R based apps e.g for graph build or machine learning projects. The features rely on a combination of JQuery <https://jquery.com> and CSS styles to improve the card functionality.
Sample size estimation in cluster (group) randomized trials. Contains traditional power-based methods, empirical smoothing (Rotondi and Donner, 2009), and updated meta-analysis techniques (Rotondi and Donner, 2012).
The main function calculates confidence intervals (CI) for Mixed Models, utilizing both classical estimators from the lmer() function in the lme4 package and robust estimators from the rlmer() function in the robustlmm package, as well as the varComprob() function in the robustvarComp package. Three methods are available: the classical Wald method, the wild bootstrap, and the parametric bootstrap. Bootstrap methods offer flexibility in obtaining lower and upper bounds through percentile or BCa methods. More details are given in Mason, F., Cantoni, E., & Ghisletta, P. (2021) <doi:10.5964/meth.6607> and Mason, F., Cantoni, E., & Ghisletta, P. (2024) <doi:10.1037/met0000643>.
Generate random numbers from the Cryptographically Secure Pseudorandom Number Generator (CSPRNG) provided by the underlying operating system. System CSPRNGs are seeded internally by the OS with entropy it gathers from the system hardware. The following system functions are used: arc4random_buf() on macOS and BSD; BCryptgenRandom() on Windows; Sys_getrandom() on Linux.
This package provides functionality for computing support intervals for univariate parameters based on confidence intervals or parameter estimates with standard errors (Pawel et al., 2022) <doi:10.48550/arXiv.2206.12290>.
Calculation of various common and less common comfort indices such as predicted mean vote or the two node model. Converts physical variables such as relative to absolute humidity and evaluates the performance of comfort indices.
This package provides methods of computerized adaptive testing for survey researchers. See Montgomery and Rossiter (2020) <doi:10.1093/jssam/smz027>. Includes functionality for data fit with the classic item response methods including the latent trait model, the Birnbaum three parameter model, the graded response, and the generalized partial credit model. Additionally, includes several ability parameter estimation and item selection routines. During item selection, all calculations are done in compiled C++ code.
Terrestrial maps with simplified topologies for Census Divisions, Agricultural Regions, Economic Regions, Federal Electoral Divisions and Provinces.
Implementations of recent complex-valued wavelet shrinkage procedures for smoothing irregularly sampled signals, see Hamilton et al (2018) <doi:10.1080/00401706.2017.1281846>.
Under natural conditions, nest temperatures fluctuate daily around a mean value, whereas in captivity they are often held constant. The Constant Temperature Equivalent is designed to bridge the gap between the two by calculating a single temperature value for wild nests that corresponds with the amount of development that would occur in an incubator set to the same temperature. The theory and formulas behind this method were developed by Professor Author Georges and are implemented here as a single function.
This package provides a Bayesian approach to using predictive probability in an ANOVA construct with a continuous normal response, when threshold values must be obtained for the question of interest to be evaluated as successful (Sieck and Christensen (2021) <doi:10.1002/qre.2802>). The Bayesian Mission Mean (BMM) is used to evaluate a question of interest (that is, a mean that randomly selects combination of factor levels based on their probability of occurring instead of averaging over the factor levels, as in the grand mean). Under this construct, in contrast to a Gibbs sampler (or Metropolis-within-Gibbs sampler), a two-stage sampling method is required. The nested sampler determines the conditional posterior distribution of the model parameters, given Y, and the outside sampler determines the marginal posterior distribution of Y (also commonly called the predictive distribution for Y). This approach provides a sample from the joint posterior distribution of Y and the model parameters, while also accounting for the threshold value that must be obtained in order for the question of interest to be evaluated as successful.
Evaluates stimuli using Large Language Models APIs with URL support.
This package provides tools to measure connection and independence between variables without relying on linear models. Includes functions to compute Eta squared, Chi-squared, and Cramer V. The main advantage of this package is that it works without requiring parametric assumptions. The methods implemented are based on educational material and statistical decomposition techniques, not directly on previously published software or articles.
This package provides a device closing function which is able to crop graphics (e.g., PDF, PNG files) on Unix-like operating systems with the required underlying command-line tools installed.
Allows clustering of incomplete observations by addressing missing values using multiple imputation. For achieving this goal, the methodology consists in three steps, following Audigier and Niang 2022 <doi:10.1007/s11634-022-00519-1>. I) Missing data imputation using dedicated models. Four multiple imputation methods are proposed, two are based on joint modelling and two are fully sequential methods, as discussed in Audigier et al. (2021) <doi:10.48550/arXiv.2106.04424>. II) cluster analysis of imputed data sets. Six clustering methods are available (distances-based or model-based), but custom methods can also be easily used. III) Partition pooling. The set of partitions is aggregated using Non-negative Matrix Factorization based method. An associated instability measure is computed by bootstrap (see Fang, Y. and Wang, J., 2012 <doi:10.1016/j.csda.2011.09.003>). Among applications, this instability measure can be used to choose a number of clusters with missing values. The package also proposes several diagnostic tools to tune the number of imputed data sets, to tune the number of iterations in fully sequential imputation, to check the fit of imputation models, etc.
This package provides a collection of functions to generate a large variety of structures in high dimensions. These data structures are useful for testing, validating, and improving algorithms used in dimensionality reduction, clustering, machine learning, and visualization.