_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-pre 1.0.8
Propagated dependencies: r-survival@3.8-3 r-stringr@1.5.1 r-rpart@4.1.24 r-partykit@1.2-24 r-matrixmodels@0.5-4 r-matrix@1.7-3 r-glmnet@4.1-8 r-formula@1.2-5 r-earth@5.3.4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/marjoleinF/pre
Licenses: GPL 2 GPL 3
Synopsis: Prediction Rule Ensembles
Description:

Derives prediction rule ensembles (PREs). Largely follows the procedure for deriving PREs as described in Friedman & Popescu (2008; <DOI:10.1214/07-AOAS148>), with adjustments and improvements described in Fokkema (2020; <DOI:10.18637/jss.v092.i12>) and Fokkema & Strobl (2020; <DOI:10.1037/met0000256>). The main function pre() derives prediction rule ensembles consisting of rules and/or linear terms for continuous, binary, count, multinomial, survival and multivariate continuous responses. Function gpe() derives generalized prediction ensembles, consisting of rules, hinge and linear functions of the predictor variables.

r-pref 0.4.0
Propagated dependencies: r-jpeg@0.1-11
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/denismollison/pref
Licenses: Expat
Synopsis: Preference Voting with Explanatory Graphics
Description:

This package implements the Single Transferable Vote (STV) electoral system, with clear explanatory graphics. The core function stv() uses Meek's method, the purest expression of the simple principles of STV, but which requires electronic counting. It can handle votes expressing equal preferences for subsets of the candidates. A function stv.wig() implementing the Weighted Inclusive Gregory method, as used in Scottish council elections, is also provided, and with the same options, as described in the manual. The required vote data format is as an R list: a function pref.data() is provided to transform some commonly used data formats into this format. References for methodology: Hill, Wichmann and Woodall (1987) <doi:10.1093/comjnl/30.3.277>, Hill, David (2006) <https://www.votingmatters.org.uk/ISSUE22/I22P2.pdf>, Mollison, Denis (2023) <arXiv:2303.15310>, (see also the package manual pref_pkg_manual.pdf).

r-preda 1.54.0
Propagated dependencies: r-multtest@2.64.0 r-lokern@1.1-12 r-biobase@2.68.0 r-annotate@1.86.0
Channel: guix-bioc
Location: guix-bioc/packages/p.scm (guix-bioc packages p)
Home page: https://bioconductor.org/packages/PREDA
Licenses: GPL 2
Synopsis: Position Related Data Analysis
Description:

Package for the position related analysis of quantitative functional genomics data.

r-prevr 5.0.0
Propagated dependencies: r-stars@0.6-8 r-sf@1.0-21 r-kernsmooth@2.23-26 r-gstat@2.1-3 r-ggplot2@3.5.2 r-foreign@0.8-90 r-fields@16.3.1 r-directlabels@2025.5.20
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/larmarange/prevR/
Licenses: CeCILL
Synopsis: Estimating Regional Trends of a Prevalence from a DHS and Similar Surveys
Description:

Spatial estimation of a prevalence surface or a relative risks surface, using data from a Demographic and Health Survey (DHS) or an analog survey, see Larmarange et al. (2011) <doi:10.4000/cybergeo.24606>.

r-prebs 1.48.0
Propagated dependencies: r-s4vectors@0.46.0 r-rpa@1.64.0 r-iranges@2.42.0 r-genomicranges@1.60.0 r-genomicalignments@1.44.0 r-genomeinfodb@1.44.0 r-biobase@2.68.0 r-affy@1.86.0
Channel: guix-bioc
Location: guix-bioc/packages/p.scm (guix-bioc packages p)
Home page: https://bioconductor.org/packages/prebs
Licenses: Artistic License 2.0
Synopsis: Probe region expression estimation for RNA-seq data for improved microarray comparability
Description:

The prebs package aims at making RNA-sequencing (RNA-seq) data more comparable to microarray data. The comparability is achieved by summarizing sequencing-based expressions of probe regions using a modified version of RMA algorithm. The pipeline takes mapped reads in BAM format as an input and produces either gene expressions or original microarray probe set expressions as an output.

r-presto 1.0.0-1.7636b3d
Propagated dependencies: r-data-table@1.17.4 r-dplyr@1.1.4 r-matrix@1.7-3 r-purrr@1.0.4 r-rcpp@1.0.14 r-rcpparmadillo@14.4.3-1 r-rlang@1.1.6 r-tibble@3.2.1 r-tidyr@1.3.1
Channel: guix
Location: gnu/packages/bioinformatics.scm (gnu packages bioinformatics)
Home page: https://github.com/immunogenomics/presto
Licenses: GPL 3
Synopsis: Fast Functions for Differential Expression using Wilcox and AUC
Description:

This package performs a fast Wilcoxon rank sum test and auROC analysis.

r-prereg 0.6.0
Propagated dependencies: r-rmarkdown@2.29 texlive-amsmath@2025.2 texlive-booktabs@2025.2 texlive-etoolbox@2025.2 texlive-fancyhdr@2025.2 texlive-fancyvrb@2025.2 texlive-geometry@2025.2 texlive-graphics@2025.2 texlive-iftex@2025.2 texlive-listings@2025.2 texlive-polyglossia@2025.2 texlive-threeparttable@2025.2 texlive-titlesec@2025.2 texlive-titling@2025.2 texlive-tools@2025.2 texlive-ulem@2025.2 texlive-upquote@2025.2 texlive-local-tree@2025.2
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/crsh/prereg
Licenses: GPL 3
Synopsis: R Markdown Templates to preregister Scientific Studies
Description:

This package provides a collection of templates to author preregistration documents for scientific studies in PDF format.

r-prefer 0.1.3
Propagated dependencies: r-mcmc@0.9-8 r-entropy@1.3.2
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/jlepird/prefeR
Licenses: Expat
Synopsis: R Package for Pairwise Preference Elicitation
Description:

Allows users to derive multi-objective weights from pairwise comparisons, which research shows is more repeatable, transparent, and intuitive other techniques. These weights can be rank existing alternatives or to define a multi-objective utility function for optimization.

r-prefio 0.2.0
Propagated dependencies: r-vctrs@0.6.5 r-tidyr@1.3.1 r-tibble@3.2.1 r-rlang@1.1.6 r-purrr@1.0.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/fleverest/prefio/
Licenses: GPL 3
Synopsis: Structures for Preference Data
Description:

Convenient structures for creating, sourcing, reading, writing and manipulating ordinal preference data. Methods for writing to/from PrefLib formats. See Nicholas Mattei and Toby Walsh "PrefLib: A Library of Preference Data" (2013) <doi:10.1007/978-3-642-41575-3_20>.

r-predhy 2.1.2
Propagated dependencies: r-xgboost@1.7.11.1 r-pls@2.8-5 r-lightgbm@4.6.0 r-glmnet@4.1-8 r-foreach@1.5.2 r-doparallel@1.0.17 r-bglr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=predhy
Licenses: GPL 3
Synopsis: Genomic Prediction of Hybrid Performance
Description:

This package performs genomic prediction of hybrid performance using eight statistical methods including GBLUP, BayesB, RKHS, PLS, LASSO, EN, LightGBM and XGBoost along with additive and additive-dominance models. Users are able to incorporate parental phenotypic information in all methods based on their specific needs. (Xu S et al(2017) <doi:10.1534/g3.116.038059>; Xu Y et al (2021) <doi: 10.1111/pbi.13458>).

r-prettyb 0.2.2
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/jumpingrivers/prettyB/
Licenses: GPL 2 GPL 3
Synopsis: Pretty Base Graphics
Description:

Drop-in replacements for standard base graphics functions. The replacements are prettier versions of the originals.

r-precrec 0.14.5
Propagated dependencies: r-assertthat@0.2.1 r-data-table@1.17.4 r-ggplot2@3.5.2 r-gridextra@2.3 r-rcpp@1.0.14 r-rlang@1.1.6 r-withr@3.0.2
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://evalclass.github.io/precrec/
Licenses: GPL 3
Synopsis: Calculate accurate precision-recall and ROC curves
Description:

This package provides tools for accurate calculations and visualization of precision-recall and ROC (Receiver Operator Characteristics) curves.

r-prenoms 0.0.1
Propagated dependencies: r-tibble@3.2.1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: <https://github.com/desautm/prenoms>
Licenses: Expat
Synopsis: Names Given to Babies in Quebec Between 1980 and 2020
Description:

This package provides a database containing the names of the babies born in Quebec between 1980 and 2020.

r-prettyr 2.2-3
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=prettyR
Licenses: GPL 2+
Synopsis: Pretty Descriptive Stats
Description:

This package provides functions for conventionally formatting descriptive stats, reshaping data frames and formatting R output as HTML.

r-predint 2.3.0
Propagated dependencies: r-mass@7.3-65 r-lme4@1.1-37 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/MaxMenssen/predint
Licenses: GPL 2+
Synopsis: Prediction Intervals
Description:

An implementation of prediction intervals for overdispersed count data, for overdispersed binomial data and for linear random effects models.

r-pretest 0.2
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=pretest
Licenses: GPL 3
Synopsis: Novel Approach to Predictive Accuracy Testing in Nested Environments
Description:

This repository contains the codes for using the predictive accuracy comparison tests developed in Pitarakis, J. (2023) <doi:10.1017/S0266466623000154>.

r-prepost 0.3.0
Propagated dependencies: r-rglpk@0.6-5.1 r-progress@1.2.3 r-lpsolve@5.6.23 r-gtools@3.9.5 r-bayeslogit@2.1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/mattblackwell/prepost
Licenses: Expat
Synopsis: Non-Parametric Bounds and Gibbs Sampler for Assessing Priming and Post-Treatment Bias
Description:

This package provides a set of tools to implement the non-parametric bounds and Bayesian methods for assessing post-treatment bias developed in Blackwell, Brown, Hill, Imai, and Yamamoto (2025) <doi:10.1017/pan.2025.3>.

r-precipe 3.0.3
Dependencies: proj@9.3.1 gdal@3.8.2
Propagated dependencies: r-twc@0.0.2 r-scales@1.4.0 r-raster@3.6-32 r-openair@2.19.0 r-magrittr@2.0.3 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-data-table@1.17.4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/MiRoVaGo/pRecipe
Licenses: GPL 3
Synopsis: Precipitation R Recipes
Description:

An open-access tool/framework to download, validate, visualize, and analyze multi-source precipitation data. More information and an example of implementation can be found in Vargas Godoy and Markonis (2023, <doi:10.1016/j.envsoft.2023.105711>).

r-presens 2.1.0
Propagated dependencies: r-measurements@1.5.1 r-marelac@2.1.11
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=presens
Licenses: GPL 3
Synopsis: Interface for PreSens Fiber Optic Data
Description:

Makes output files from select PreSens Fiber Optic Oxygen Transmitters easier to work with in R. See <http://www.presens.de> for more information about PreSens (Precision Sensing GmbH). Note: this package is neither created nor maintained by PreSens.

r-precmed 1.1.0
Propagated dependencies: r-tidyr@1.3.1 r-survival@3.8-3 r-stringr@1.5.1 r-rlang@1.1.6 r-randomforestsrc@2.9.3 r-mgcv@1.9-3 r-mass@7.3-65 r-glmnet@4.1-8 r-ggplot2@3.5.2 r-gbm@2.2.2 r-gam@1.22-5 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/smartdata-analysis-and-statistics/precmed
Licenses: ASL 2.0
Synopsis: Precision Medicine
Description:

This package provides a doubly robust precision medicine approach to fit, cross-validate and visualize prediction models for the conditional average treatment effect (CATE). It implements doubly robust estimation and semiparametric modeling approach of treatment-covariate interactions as proposed by Yadlowsky et al. (2020) <doi:10.1080/01621459.2020.1772080>.

r-presize 0.3.7
Propagated dependencies: r-shiny@1.10.0 r-kappasize@1.2
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/CTU-Bern/presize
Licenses: GPL 3
Synopsis: Precision Based Sample Size Calculation
Description:

Bland (2009) <doi:10.1136/bmj.b3985> recommended to base study sizes on the width of the confidence interval rather the power of a statistical test. The goal of presize is to provide functions for such precision based sample size calculations. For a given sample size, the functions will return the precision (width of the confidence interval), and vice versa.

r-precast 1.7
Propagated dependencies: r-seurat@5.3.0 r-scater@1.36.0 r-scales@1.4.0 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-purrr@1.0.4 r-pbapply@1.7-2 r-patchwork@1.3.0 r-mclust@6.1.1 r-matrix@1.7-3 r-mass@7.3-65 r-irlba@2.3.5.1 r-harmony@1.2.3 r-gtools@3.9.5 r-ggthemes@5.1.0 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-dr-sc@3.6 r-dplyr@1.1.4 r-cowplot@1.1.3 r-colorspace@2.1-1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/feiyoung/PRECAST
Licenses: GPL 3
Synopsis: Embedding and Clustering with Alignment for Spatial Omics Datasets
Description:

An efficient data integration method is provided for multiple spatial transcriptomics data with non-cluster-relevant effects such as the complex batch effects. It unifies spatial factor analysis simultaneously with spatial clustering and embedding alignment, requiring only partially shared cell/domain clusters across datasets. More details can be referred to Wei Liu, et al. (2023) <doi:10.1038/s41467-023-35947-w>.

r-prefmod 0.8-37
Propagated dependencies: r-gnm@1.1-5 r-colorspace@2.1-1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=prefmod
Licenses: GPL 2+
Synopsis: Utilities to Fit Paired Comparison Models for Preferences
Description:

Generates design matrix for analysing real paired comparisons and derived paired comparison data (Likert type items/ratings or rankings) using a loglinear approach. Fits loglinear Bradley-Terry model (LLBT) exploiting an eliminate feature. Computes pattern models for paired comparisons, rankings, and ratings. Some treatment of missing values (MCAR and MNAR). Fits latent class (mixture) models for paired comparison, rating and ranking patterns using a non-parametric ML approach.

r-preseqr 4.0.0
Propagated dependencies: r-polynom@1.4-1
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://cran.r-project.org/web/packages/preseqR/
Licenses: GPL 3
Synopsis: Predicting species accumulation curves
Description:

This package can be used to predict the r-species accumulation curve (r-SAC), which is the number of species represented at least r times as a function of the sampling effort. When r = 1, the curve is known as the species accumulation curve, or the library complexity curve in high-throughput genomic sequencing. The package includes both parametric and nonparametric methods, as described by Deng C, et al. (2018).

Page: 1234
Total results: 91