Acquire hourly meteorological data from stations located all over the world. There is a wealth of data available, with historic weather data accessible from nearly 30,000 stations. The available data is automatically downloaded from a data repository and processed into a tibble for the exact range of years requested. A relative humidity approximation is provided using the August-Roche-Magnus formula, which was adapted from Alduchov and Eskridge (1996) <doi:10.1175%2F1520-0450%281996%29035%3C0601%3AIMFAOS%3E2.0.CO%3B2>.
An exploratory and heuristic approach for specification search in Structural Equation Modeling. The basic idea is to subsample the original data and then search for optimal models on each subset. Optimality is defined through two objectives: model fit and parsimony. As these objectives are conflicting, we apply a multi-objective optimization methods, specifically NSGA-II, to obtain optimal models for the whole range of model complexities. From these optimal models, we consider only the relevant model specifications (structures), i.e., those that are both stable (occur frequently) and parsimonious and use those to infer a causal model.
This package implements multi-study learning algorithms such as merging, the study-specific ensemble (trained-on-observed-studies ensemble) the study strap, the covariate-matched study strap, covariate-profile similarity weighting, and stacking weights. Embedded within the caret framework, this package allows for a wide range of single-study learners (e.g., neural networks, lasso, random forests). The package offers over 20 default similarity measures and allows for specification of custom similarity measures for covariate-profile similarity weighting and an accept/reject step. This implements methods described in Loewinger, Kishida, Patil, and Parmigiani. (2019) <doi:10.1101/856385>.
Stochastic blockmodeling of one-mode and linked networks as implemented in Škulj and Žiberna (2022) <doi:10.1016/j.socnet.2022.02.001>. The optimization is done via CEM (Classification Expectation Maximization) algorithm that can be initialized by random partitions or the results of k-means algorithm. The development of this package is financially supported by the Slovenian Research Agency (<https://www.arrs.si/>) within the research programs P5-0168 and the research projects J7-8279 (Blockmodeling multilevel and temporal networks) and J5-2557 (Comparison and evaluation of different approaches to blockmodeling dynamic networks by simulations with application to Slovenian co-authorship networks).
Numerically solve and plot solutions of a parametric ordinary differential equations model of growth, death, and respiration of macroinvertebrate and algae taxa dependent on pre-defined environmental factors. The model (version 1.0) is introduced in Schuwirth, N. and Reichert, P., (2013) <DOI:10.1890/12-0591.1>. This package includes model extensions and the core functions introduced and used in Schuwirth, N. et al. (2016) <DOI:10.1111/1365-2435.12605>, Kattwinkel, M. et al. (2016) <DOI:10.1021/acs.est.5b04068>, Mondy, C. P., and Schuwirth, N. (2017) <DOI:10.1002/eap.1530>, and Paillex, A. et al. (2017) <DOI:10.1111/fwb.12927>.
This package provides functions for the collection of 3D points and curves using a stereo camera setup.
This package provides tools which allow regression variables to be placed on similar scales, offering computational benefits as well as easing interpretation of regression output.
This package performs complex string operations compactly and efficiently. It supports string interpolation jointly with over 50 string operations. It also enhances regular string functions (like grep()
and co).
Extract glyph information from font data, and translate the outline curves to flattened paths or tessellated polygons. The converted data is returned as a data.frame in easy-to-plot format.
This package provides a tool that makes estimating models in state space form a breeze. See "Time Series Analysis by State Space Methods" by Durbin and Koopman (2012, ISBN: 978-0-19-964117-8) for details about the algorithms implemented.
This app enables interactive validation, interpretation and visualization of structural topic models from the stm package by Roberts and others (2014) <doi:10.1111/ajps.12103>. It also includes helper functions for model diagnostics and extracting data from effect estimates.
Fast single trait Genome Wide Association Studies (GWAS) following the method described in Kang et al. (2010), <doi:10.1038/ng.548>. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris.
Estimate the four parameters of stable laws using maximum likelihood method, generalised method of moments with finite and continuum number of points, iterative Koutrouvelis regression and Kogon-McCulloch
method. The asymptotic properties of the estimators (covariance matrix, confidence intervals) are also provided.
Parameter estimation for stochastic volatility models using maximum likelihood. The latent log-volatility is integrated out of the likelihood using the Laplace approximation. The models are fitted via TMB (Template Model Builder) (Kristensen, Nielsen, Berg, Skaug, and Bell (2016) <doi:10.18637/jss.v070.i05>).
This package provides a step-down procedure for controlling the False Discovery Proportion (FDP) in a competition-based setup, implementing Dong et al. (2020) <arXiv:2011.11939>
. Such setups include target-decoy competition (TDC) in computational mass spectrometry and the knockoff construction in linear regression.
The package is used for calibrating the design parameters for single-to-double arm transition design proposed by Shi and Yin (2017). The calibration is performed via numerical enumeration to find the optimal design that satisfies the constraints on the type I and II error rates.
A streamgraph is a type of stacked area chart. It represents the evolution of a numeric variable for several groups. Areas are usually displayed around a central axis, and edges are rounded to give a flowing shape. This package provides an htmlwidget
for building streamgraph visualizations.
This package provides a convenient interface to the staticrypt by Robin Moisson <https://github.com/robinmoisson/staticrypt>---'Node.js package for adding a password protection layer to static HTML pages. This package can be integrated into the post-render process of quarto documents to secure them with a password.
Download data from StatsWales
into R. Removes the need for the user to write their own loops when parsing data from the StatsWales
API. Provides functions for datasets (<http://open.statswales.gov.wales/en-gb/dataset>) and metadata (<http://open.statswales.gov.wales/en-gb/discover/metadata>) endpoints.
This package provides a collection of functions to search and download street view imagery ('Mapilary <https://www.mapillary.com/developer/api-documentation>) and to extract, quantify, and visualize visual features. Moreover, there are functions provided to generate Qualtrics survey in TXT format using the collection of street views for various research purposes.
This is a compilation of my preferred themes and related theme elements for ggplot2'. I believe these themes and theme elements are aesthetically pleasing, both for pedagogical instruction and for the presentation of applied statistical research to a wide audience. These themes imply routine use of easily obtained/free fonts, simple forms of which are included in this package.
Offers a comprehensive approach for analysing stratified 2x2 contingency tables. It facilitates the calculation of odds ratios, 95% confidence intervals, and conducts chi-squared, Cochran-Mantel-Haenszel, Mantel-Haenszel, and Breslow-Day-Tarone tests. The package is particularly useful in fields like epidemiology and social sciences where stratified analysis is essential. The package also provides interpretative insights into the results, aiding in the understanding of statistical outcomes.
Manipulating input and output files of the STICS crop model. Files are either JavaSTICS
XML files or text files used by the model fortran executable. Most basic functionalities are reading or writing parameter names and values in both XML or text input files, and getting data from output files. Advanced functionalities include XML files generation from XML templates and/or spreadsheets, or text files generation from XML files by using xslt transformation.
Download, navigate and analyse the Student-Life dataset. The Student-Life dataset contains passive and automatic sensing data from the phones of a class of 48 Dartmouth college students. It was collected over a 10 week term. Additionally, the dataset contains ecological momentary assessment results along with pre-study and post-study mental health surveys. The intended use is to assess mental health, academic performance and behavioral trends. The raw dataset and additional information is available at <https://studentlife.cs.dartmouth.edu/>.