The original definition of the two and three dimensional Kolmogorov-Smirnov two-sample test statistics given by Peacock (1983) is implemented. Two R-functions: peacock2 and peacock3, are provided to compute the test statistics in two and three dimensional spaces, respectively. Note the Peacock test is different from the Fasano and Franceschini test (1987). The latter is a variant of the Peacock test.
This package provides functions for fitting and validation of models for subgroup identification and personalized medicine / precision medicine under the general subgroup identification framework of Chen et al. (2017) <doi:10.1111/biom.12676>. This package is intended for use for both randomized controlled trials and observational studies and is described in detail in Huling and Yu (2021) <doi:10.18637/jss.v098.i05>.
This package provides three basic functions that support an implementation of Case 2 (profile case) best-worst scaling. The first is to convert an orthogonal main-effect design into questions, the second is to create a dataset suitable for analysis, and the third is to calculate count-based scores. For details, see Aizaki and Fogarty (2019) <doi:10.1016/j.jocm.2019.100171>.
Semi-parametric estimation problem can be solved by two-step Newton-Raphson iteration. The implicit profiling method<arXiv:2108.07928> is an improved method of two-step NR iteration especially for the implicit-bundled type of the parametric part and non-parametric part. This package provides a function semislv() supporting the above two methods and numeric derivative approximation for unprovided Jacobian matrix.
Stores objects (e.g. neural networks) that are needed for using Sojourn accelerometer methods. For more information, see Lyden K, Keadle S, Staudenmayer J, & Freedson P (2014) <doi:10.1249/MSS.0b013e3182a42a2d>, Ellingson LD, Schwabacher IJ, Kim Y, Welk GJ, & Cook DB (2016) <doi:10.1249/MSS.0000000000000915>, and Hibbing PR, Ellingson LD, Dixon PM, & Welk GJ (2018) <doi:10.1249/MSS.0000000000001486>.
This package contains diverse functionality to extend the usage of the iSEE package, including additional classes for the panels or modes facilitating the analysis of pathway analysis results. This package does not perform pathway analysis. Instead, it provides methods to embed precomputed pathway analysis results in a SummarizedExperiment object, in a manner that is compatible with interactive visualisation in iSEE applications.
The tuberculosis R/Bioconductor package features tuberculosis gene expression data for machine learning. All human samples from GEO that did not come from cell lines, were not taken postmortem, and did not feature recombination have been included. The package has more than 10,000 samples from both microarray and sequencing studies that have been processed from raw data through a hyper-standardized, reproducible pipeline.
This package provides a statistical method to impute the missing values in accelerometer data. The methodology includes both parametric and semi-parametric multiple imputations under the zero-inflated Poisson lognormal model. It also provides multiple functions to preprocess the accelerometer data previous to the missing data imputation. These include detecting the wearing and the non-wearing time, selecting valid days and subjects, and creating plots.
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute. These are the provided Ray AI libraries:
Data: Scalable datasets for ML;
Train: Distributed training;
Tune: Scalable hyperparameter tuning;
RLlib: Scalable reinforcement learning;
Serve: Scalable and programmable serving.
This package provides functions for processing and analyzing survey data from the All of Us Social Determinants of Health (AOUSDOH) program, including tools for calculating health and well-being scores, recoding variables, and simplifying survey data analysis. For more details see - Koleck TA, Dreisbach C, Zhang C, Grayson S, Lor M, Deng Z, Conway A, Higgins PDR, Bakken S (2024) <doi:10.1093/jamia/ocae214>.
This package implements two out-of box classifiers presented in <doi:10.1002/env.2848> for distinguishing forest and non-forest terrain images. Under these algorithms, there are frequentist approaches: one parametric, using stable distributions, and another one- non-parametric, using the squared Mahalanobis distance. The package also contains functions for data handling and building of new classifiers as well as some test data set.
This package performs nonlinear Invariant Causal Prediction to estimate the causal parents of a given target variable from data collected in different experimental or environmental conditions, extending Invariant Causal Prediction from Peters, Buehlmann and Meinshausen (2016), <arXiv:1501.01332>, to nonlinear settings. For more details, see C. Heinze-Deml, J. Peters and N. Meinshausen: Invariant Causal Prediction for Nonlinear Models', <arXiv:1706.08576>.
ChIPanalyser is a package to predict and understand TF binding by utilizing a statistical thermodynamic model. The model incorporates 4 main factors thought to drive TF binding: Chromatin State, Binding energy, Number of bound molecules and a scaling factor modulating TF binding affinity. Taken together, ChIPanalyser produces ChIP-like profiles that closely mimic the patterns seens in real ChIP-seq data.
An interactive web application for quality control, filtering and trimming of FASTQ files. This user-friendly tool combines a pipeline for data processing based on Biostrings and ShortRead infrastructure, with a cutting-edge visual environment. Single-Read and Paired-End files can be locally processed. Diagnostic interactive plots (CG content, per-base sequence quality, etc.) are provided for both the input and output files.
NetPathMiner is a general framework for network path mining using genome-scale networks. It constructs networks from KGML, SBML and BioPAX files, providing three network representations, metabolic, reaction and gene representations. NetPathMiner finds active paths and applies machine learning methods to summarize found paths for easy interpretation. It also provides static and interactive visualizations of networks and paths to aid manual investigation.
This is an implementation of the Future API on top of the callr package. This allows you to process futures, as defined by the future package, in parallel out of the box, on your local machine. Contrary to backends relying on the parallel package (e.g. future::multisession) and socket connections, the callr backend provided here can run more than 125 parallel R processes.
This package provides a simple user-friendly library based on the python module reservoirpy'. It provides a flexible interface to implement efficient Reservoir Computing (RC) architectures with a particular focus on Echo State Networks (ESN). Some of its features are: offline and online training, parallel implementation, sparse matrix computation, fast spectral initialization, advanced learning rules (e.g. Intrinsic Plasticity) etc. It also makes possible to easily create complex architectures with multiple reservoirs (e.g. deep reservoirs), readouts, and complex feedback loops. Moreover, graphical tools are included to easily explore hyperparameters. Finally, it includes several tutorials exploring time series forecasting, classification and hyperparameter tuning. For more information about reservoirpy', please see Trouvain et al. (2020) <doi:10.1007/978-3-030-61616-8_40>. This package was developed in the framework of the University of Bordeauxâ s IdEx "Investments for the Future" program / RRI PHDS.
Estimates and plots as a heat map the rolling window wavelet correlation (RWWC) coefficients statistically significant (within the 95% CI) between two regular (evenly spaced) time series. RolWinWavCor also plots at the same graphic the time series under study. The RolWinWavCor was designed for financial time series, but this software can be used with other kinds of data (e.g., climatic, ecological, geological, etc). The functions contained in RolWinWavCor are highly flexible since these contains some parameters to personalize the time series under analysis and the heat maps of the rolling window wavelet correlation coefficients. Moreover, we have also included a data set (named EU_stock_markets) that contains nine European stock market indices to exemplify the use of the functions contained in RolWinWavCor'. Methods derived from Polanco-Martà nez et al (2018) <doi:10.1016/j.physa.2017.08.065>).
This package provides a friendly interface for modifying data frames with a sequence of piped commands built upon the tidyverse Wickham et al., (2019) <doi:10.21105/joss.01686> . The majority of commands wrap dplyr mutate statements in a convenient way to concisely solve common issues that arise when tidying small to medium data sets. Includes smart defaults and allows flexible selection of columns via tidyselect'.
Estimates key quantities in causal mediation analysis - including average causal mediation effects (indirect effects), average direct effects, total effects, and proportions mediated - in the presence of multiple uncausally related mediators. Methods are described by Jérolon et al., (2021) <doi:10.1515/ijb-2019-0088> and extended to accommodate survival outcomes as described by Domingo-Relloso et al., (2024) <doi:10.1101/2024.02.16.24302923>.
Mass spectrometry (MS) data backend supporting import and handling of MS/MS spectra from NIST MSP Format (msp) files. Import of data from files with different MSP *flavours* is supported. Objects from this package add support for MSP files to Bioconductor's Spectra package. This package is thus not supposed to be used without the Spectra package that provides a complete infrastructure for MS data handling.
Meyer and Held (2017) <doi:10.1093/biostatistics/kxw051> present an age-structured spatio-temporal model for infectious disease counts. The approach is illustrated in a case study on norovirus gastroenteritis in Berlin, 2011-2015, by age group, city district and week, using additional contact data from the POLYMOD survey. This package contains the data and code to reproduce the results from the paper, see demo("hhh4contacts")'.
This package provides a collection of wrapper functions for common variable and dataset manipulation workflows primarily used by iNZight', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions. Additionally, many of the functions return the tidyverse code used to obtain the result in an effort to bridge the gap between GUI and coding.
This package provides comprehensive tools to scrape and analyze data from the MDPI journals. It allows users to extract metrics such as submission-to-acceptance times, article types, and whether articles are part of special issues. The package can also visualize this information through plots. Additionally, MDPIexploreR offers tools to explore patterns of self-citations within articles and provides insights into guest-edited special issues.