MetaboSignal is an R package that allows merging, analyzing and customizing metabolic and signaling KEGG pathways. It is a network-based approach designed to explore the topological relationship between genes (signaling- or enzymatic-genes) and metabolites, representing a powerful tool to investigate the genetic landscape and regulatory networks of metabolic phenotypes.
NormalyzerDE provides screening of normalization methods for LC-MS based expression data. It calculates a range of normalized matrices using both existing approaches and a novel time-segmented approach, calculates performance measures and generates an evaluation report. Furthermore, it provides an easy utility for Limma- or ANOVA- based differential expression analysis.
This package provides functions for differential chromatin interaction analysis between two single-cell Hi-C data groups. It includes tools for imputation, normalization, and differential analysis of chromatin interactions. The package implements pooling techniques for imputation and offers methods to normalize and test for differential interactions across single-cell Hi-C datasets.
The package contains local copy of the Synaptic proteome database. On top of this it provide a set of utility R functions to query and analyse its content. It allows extraction of information for specific genes and building the protein-protein interaction graph for gene sets, synaptic compartments, and brain regions.
Extends blockr.core with interactive blocks for visual data wrangling using dplyr and tidyr operations. Users can build data transformation pipelines through a graphical interface without writing code directly. Includes blocks for filtering, selecting, mutating, summarizing, joining, and arranging data, with support for complex expressions, grouping operations, and real-time validation.
Simple interpolation methods designed to be used from C code. Supports constant, linear and spline interpolation. An R wrapper is included but this package is primarily designed to be used from C code using LinkingTo'. The spline calculations are classical cubic interpolation, e.g., Forsythe, Malcolm and Moler (1977) <ISBN: 9780131653320>.
There are many estimators of false discovery rate. In this package we compute the Nonlocal False Discovery Rate (NFDR) and the estimators of local false discovery rate: Corrected False discovery Rate (CFDR), Re-ranked False Discovery rate (RFDR) and the blended estimator. Bickel, D.R., Rahal, A. (2019) <https://tinyurl.com/kkdc9rk8>.
This package provides a wrapper for circlize'. All components are based on classes and objects. Users can use the addition symbol (+) to combine components for a circular visualization with ggplot2 style.The package is described in Zhang Z, Cao T, Huang Y and Xia Y (2025) <doi:10.3389/fgene.2025.1535368>.
The dentomedical package provides a comprehensive suite of tools for medical and dental research. It includes automated descriptive statistics, bivariate analysis with intelligent test selection, logistic regression, and diagnostic accuracy assessment. All functions generate structured, publication-ready tables using flextable', ensuring reproducibility and clarity suitable for manuscripts, reports, and clinical research workflows.
The EconDataverse is a universe of open-source packages to work seamlessly with economic data. This package is designed to make it easy to download selected datasets that are preprocessed by EconDataverse packages and publicly hosted on Hugging Face'. Learn more about the EconDataverse at <https://www.econdataverse.org>.
Free United Kingdom National Health Service (NHS) and other healthcare, or population health-related data for education and training purposes. This package contains synthetic data based on real healthcare datasets, or cuts of open-licenced official data. This package exists to support skills development in the NHS-R community: <https://nhsrcommunity.com/>.
This package provides a model-agnostic framework for selecting dataset-specific imputation methods for missing values in numerical data related to pain. Lotsch J, Ultsch A (2025) "A model-agnostic framework for dataset-specific selection of missing value imputation methods in pain-related numerical data" Canadian Journal of Pain (in minor revision).
This package implements a suite of tools for outlier detection and treatment in data mining. It includes univariate methods (Z-score, Interquartile Range), multivariate detection using Mahalanobis distance, and density-based detection (Local Outlier Factor) via the dbscan package. It also provides functions for visualization using ggplot2 and data cleaning via Winsorization.
This package provides triangulations of regular height fields, based on the methods described in "Fast Polygonal Approximation of Terrains and Height Fields" Michael Garland and Paul S. Heckbert (1995) <https://www.mgarland.org/files/papers/scape.pdf> using code from the hmm library written by Michael Fogleman <https://github.com/fogleman/hmm>.
Converts an XLSForm (survey in Excel') into a well-structured Word document, including sections, skip logic, options, and question labels. Designed to support survey documentation, training materials, and data collection workflows. The package was developed based on field experience with XLSForm and humanitarian operations, aiming to streamline documentation and enhance training efficiency.
Emacs Org Roam is a solution for taking non-hierarchical notes with Org mode. Notes are captured without hierarchy and are connected by tags. Notes can be found and created quickly. Org Roam should also work as a plug-and-play solution for anyone already using Org mode for their personal wiki.
This package implements the gene expression anti-profiles method. Anti-profiles are a new approach for developing cancer genomic signatures that specifically take advantage of gene expression heterogeneity. They explicitly model increased gene expression variability in cancer to define robust and reproducible gene expression signatures capable of accurately distinguishing tumor samples from healthy controls.
ClusterJudge implements the functions, examples and other software published as an algorithm by Gibbons, FD and Roth FP. The article is called "Judging the Quality of Gene Expression-Based Clustering Methods Using Gene Annotation" and it appeared in Genome Research, vol. 12, pp1574-1581 (2002). See package?ClusterJudge for an overview.
Bagging bandwidth selection methods for the Parzen-Rosenblatt and Nadaraya-Watson estimators. These bandwidth selectors can achieve greater statistical precision than their non-bagged counterparts while being computationally fast. See Barreiro-Ures et al. (2020) <doi:10.1093/biomet/asaa092> and Barreiro-Ures et al. (2021) <doi:10.48550/arXiv.2105.04134>.
Uses non-linear regression to statistically compare two circadian rhythms. Groups are only compared if both are rhythmic (amplitude is non-zero). Performs analyses regarding mesor, phase, and amplitude, reporting on estimates and statistical differences, for each, between groups. Details can be found in Parsons et al (2020) <doi:10.1093/bioinformatics/btz730>.
This package provides an array of statistical models common in causal inference such as standardization, IP weighting, propensity matching, outcome regression, and doubly-robust estimators. Estimates of the average treatment effects from each model are given with the standard error and a 95% Wald confidence interval (Hernan, Robins (2020) <https://miguelhernan.org/whatifbook/>).
Constructs dynamic optimal shrinkage estimators for the weights of the global minimum variance portfolio which are reconstructed at given reallocation points as derived in Bodnar, Parolya, and Thorsén (2021) (<arXiv:2106.02131>). Two dynamic shrinkage estimators are available in this package. One using overlapping samples while the other use nonoverlapping samples.
Simple feature stores and tools for creating personalised feature stores. diseasystore powers feature stores which can automatically link and aggregate features to a given stratification level. These feature stores are automatically time-versioned (powered by the SCDB package) and allows you to easily and dynamically compute features as part of your continuous integration.
An index measuring the amount of information brought by forecasts for extreme events, subject to calibration, is computed. This index is originally designed for weather or climate forecasts, but it may be used in other forecasting contexts. This is the implementation of the index in Taillardat et al. (2019) <arXiv:1905.04022>.