This package performs nonlinear Invariant Causal Prediction to estimate the causal parents of a given target variable from data collected in different experimental or environmental conditions, extending Invariant Causal Prediction from Peters, Buehlmann and Meinshausen (2016), <arXiv:1501.01332>, to nonlinear settings. For more details, see C. Heinze-Deml, J. Peters and N. Meinshausen: Invariant Causal Prediction for Nonlinear Models', <arXiv:1706.08576>.
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute. These are the provided Ray AI libraries:
Data: Scalable datasets for ML;
Train: Distributed training;
Tune: Scalable hyperparameter tuning;
RLlib: Scalable reinforcement learning;
Serve: Scalable and programmable serving.
Estimates and plots as a heat map the rolling window wavelet correlation (RWWC) coefficients statistically significant (within the 95% CI) between two regular (evenly spaced) time series. RolWinWavCor also plots at the same graphic the time series under study. The RolWinWavCor was designed for financial time series, but this software can be used with other kinds of data (e.g., climatic, ecological, geological, etc). The functions contained in RolWinWavCor are highly flexible since these contains some parameters to personalize the time series under analysis and the heat maps of the rolling window wavelet correlation coefficients. Moreover, we have also included a data set (named EU_stock_markets) that contains nine European stock market indices to exemplify the use of the functions contained in RolWinWavCor'. Methods derived from Polanco-Martà nez et al (2018) <doi:10.1016/j.physa.2017.08.065>).
This package provides a simple user-friendly library based on the python module reservoirpy'. It provides a flexible interface to implement efficient Reservoir Computing (RC) architectures with a particular focus on Echo State Networks (ESN). Some of its features are: offline and online training, parallel implementation, sparse matrix computation, fast spectral initialization, advanced learning rules (e.g. Intrinsic Plasticity) etc. It also makes possible to easily create complex architectures with multiple reservoirs (e.g. deep reservoirs), readouts, and complex feedback loops. Moreover, graphical tools are included to easily explore hyperparameters. Finally, it includes several tutorials exploring time series forecasting, classification and hyperparameter tuning. For more information about reservoirpy', please see Trouvain et al. (2020) <doi:10.1007/978-3-030-61616-8_40>. This package was developed in the framework of the University of Bordeauxâ s IdEx "Investments for the Future" program / RRI PHDS.
Mass spectrometry (MS) data backend supporting import and handling of MS/MS spectra from NIST MSP Format (msp) files. Import of data from files with different MSP *flavours* is supported. Objects from this package add support for MSP files to Bioconductor's Spectra package. This package is thus not supposed to be used without the Spectra package that provides a complete infrastructure for MS data handling.
This package provides a friendly interface for modifying data frames with a sequence of piped commands built upon the tidyverse Wickham et al., (2019) <doi:10.21105/joss.01686> . The majority of commands wrap dplyr mutate statements in a convenient way to concisely solve common issues that arise when tidying small to medium data sets. Includes smart defaults and allows flexible selection of columns via tidyselect'.
Estimates key quantities in causal mediation analysis - including average causal mediation effects (indirect effects), average direct effects, total effects, and proportions mediated - in the presence of multiple uncausally related mediators. Methods are described by Jérolon et al., (2021) <doi:10.1515/ijb-2019-0088> and extended to accommodate survival outcomes as described by Domingo-Relloso et al., (2024) <doi:10.1101/2024.02.16.24302923>.
This package provides datasets associated with the gap package. Currently, it includes an example data for regional association plot (CDKN), an example data for a genomewide association meta-analysis (OPG), data in studies of Parkinson's diease (PD), ALHD2 markers and alcoholism (aldh2), APOE/APOC1 markers and Schizophrenia (apoeapoc), cystic fibrosis (cf), a Olink/INF panel (inf1), Manhattan plots with (hr1420, mhtdata) and without (w4) gene annotations.
Our R package MultiRNAflow provides an easy to use unified framework allowing to automatically make both unsupervised and supervised (DE) analysis for datasets with an arbitrary number of biological conditions and time points. In particular, our code makes a deep downstream analysis of DE information, e.g. identifying temporal patterns across biological conditions and DE genes which are specific to a biological condition for each time.
Meyer and Held (2017) <doi:10.1093/biostatistics/kxw051> present an age-structured spatio-temporal model for infectious disease counts. The approach is illustrated in a case study on norovirus gastroenteritis in Berlin, 2011-2015, by age group, city district and week, using additional contact data from the POLYMOD survey. This package contains the data and code to reproduce the results from the paper, see demo("hhh4contacts")'.
This package provides a collection of wrapper functions for common variable and dataset manipulation workflows primarily used by iNZight', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions. Additionally, many of the functions return the tidyverse code used to obtain the result in an effort to bridge the gap between GUI and coding.
This package provides comprehensive tools to scrape and analyze data from the MDPI journals. It allows users to extract metrics such as submission-to-acceptance times, article types, and whether articles are part of special issues. The package can also visualize this information through plots. Additionally, MDPIexploreR offers tools to explore patterns of self-citations within articles and provides insights into guest-edited special issues.
Package for processing downloaded MODIS Calibrated radiances Product HDF files. Specifically, MOD02 calibrated radiance product files, and the associated MOD03 geolocation files (for MODIS-TERRA). The package will be most effective if the user installs MRTSwath (MODIS Reprojection Tool for swath products; <https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath>, and adds the directory with the MRTSwath executable to the default R PATH by editing ~/.Rprofile.
The scRepertoire package was built to process data derived from the 10x Genomics Chromium Immune Profiling for both TCR and Ig enrichment workflows and subsequently interacts with the popular Seurat and SingleCellExperiment R packages. It also allows for general analysis of single-cell clonotype information without the use of expression information. The package functions as a wrapper for Startrac and powerTCR R packages.
Explore, diagnose, and compare variant calls using filters. The VariantTools package supports a workflow for loading data, calling single sample variants and tumor-specific somatic mutations or other sample-specific variant types (e.g., RNA editing). Most of the functions operate on alignments (BAM files) or datasets of called variants. The user is expected to have already aligned the reads with a separate tool, e.g., GSNAP via gmapR.
Measuring child development starts by collecting responses to developmental milestones, such as "able to sit" or "says two words". There are many ways to combine such responses into summaries. The package bundles publicly available datasets with individual milestone data for children aged 0-5 years, with the aim of supporting the construction, evaluation, validation and interpretation of methodologies that aggregate milestone data into informative measures of child development.
This high-level API client provides open access to cryptocurrency market data, sentiment indicators, and interactive charting tools. The data is sourced from major cryptocurrency exchanges via curl and returned in xts'-format. The data comes in open, high, low, and close (OHLC) format with flexible granularity, ranging from seconds to months. This flexibility makes it ideal for developing and backtesting trading strategies or conducting detailed market analysis.
Given two samples of size n_1 and n_2 from a data set where each sample consists of K functional observations (channels), each recorded on T grid points, the function energy method implements a hypothesis test of equality of channel-wise mean at each channel using the bootstrapped distribution of maximum energy to control family wise error. The function energy_method_complex accomodates complex valued functional observations.
This package provides a lightweight package to compute Maximal Overlap Discrete Wavelet Transform (MODWT) and à Trous Discrete Wavelet Transform by leveraging the power of Rcpp to make these operations fast. This package was designed for use in forecasting, and allows users avoid the inclusion of future data when performing wavelet decomposition of time series. See Quilty and Adamowski (2018) <doi:10.1016/j.jhydrol.2018.05.003>.
This package provides functions for drawing node-and-edge graphs that have been laid out by graphviz'. This provides an alternative rendering to that provided by the Rgraphviz package, with two main advantages: the rendering provided by gridGraphviz should be more similar to what graphviz itself would draw; and rendering with grid allows for post-hoc customisations using the named viewports and grobs that gridGraphviz produces.
Fits the logistic equation to microbial growth curve data (e.g., repeated absorbance measurements taken from a plate reader over time). From this fit, a variety of metrics are provided, including the maximum growth rate, the doubling time, the carrying capacity, the area under the logistic curve, and the time to the inflection point. Method described in Sprouffske and Wagner (2016) <doi:10.1186/s12859-016-1016-7>.
This package provides functions for fitting various penalized parametric and semi-parametric mixture cure models with different penalty functions, testing for a significant cure fraction, and testing for sufficient follow-up as described in Fu et al (2022)<doi:10.1002/sim.9513> and Archer et al (2024)<doi:10.1186/s13045-024-01553-6>. False discovery rate controlled variable selection is provided using model-X knock-offs.
Framework for the Item Response Theory analysis of dichotomous and ordinal polytomous outcomes under the assumption of within-item multidimensionality and discreteness of the latent traits. The fitting algorithms allow for missing responses and for different item parametrizations and are based on the Expectation-Maximization paradigm. Individual covariates affecting the class weights may be included in the new version together with possibility of constraints on all model parameters.
An interface to Azure CosmosDB': <https://azure.microsoft.com/en-us/services/cosmos-db/>. On the admin side, AzureCosmosR provides functionality to create and manage Cosmos DB instances in Microsoft's Azure cloud. On the client side, it provides an interface to the Cosmos DB SQL API, letting the user store and query documents and attachments in Cosmos DB'. Part of the AzureR family of packages.