_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-predrupdate 0.2.0
Propagated dependencies: r-survival@3.8-3 r-rlang@1.1.6 r-proc@1.18.5 r-ggpubr@0.6.0 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/GlenMartin31/predRupdate
Licenses: Expat
Synopsis: Prediction Model Validation and Updating
Description:

Evaluate the predictive performance of an existing (i.e. previously developed) prediction/ prognostic model given relevant information about the existing prediction model (e.g. coefficients) and a new dataset. Provides a range of model updating methods that help tailor the existing model to the new dataset; see Su et al. (2018) <doi:10.1177/0962280215626466>. Techniques to aggregate multiple existing prediction models on the new data are also provided; see Debray et al. (2014) <doi:10.1002/sim.6080> and Martin et al. (2018) <doi:10.1002/sim.7586>).

r-stackimpute 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-sandwich@3.1-1 r-mice@3.17.0 r-mass@7.3-65 r-magrittr@2.0.3 r-dplyr@1.1.4 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=StackImpute
Licenses: GPL 2
Synopsis: Tools for Analysis of Stacked Multiple Imputations
Description:

This package provides methods for inference using stacked multiple imputations augmented with weights. The vignette provides example R code for implementation in general multiple imputation settings. For additional details about the estimation algorithm, we refer the reader to Beesley, Lauren J and Taylor, Jeremy M G (2020) â A stacked approach for chained equations multiple imputation incorporating the substantive modelâ <doi:10.1111/biom.13372>, and Beesley, Lauren J and Taylor, Jeremy M G (2021) â Accounting for not-at-random missingness through imputation stackingâ <arXiv:2101.07954>.

r-tidyheatmap 1.11.6
Propagated dependencies: r-viridis@0.6.5 r-tidyr@1.3.1 r-tibble@3.2.1 r-rlang@1.1.6 r-rcolorbrewer@1.1-3 r-purrr@1.0.4 r-patchwork@1.3.0 r-magrittr@2.0.3 r-lifecycle@1.0.4 r-dplyr@1.1.4 r-dendextend@1.19.0 r-complexheatmap@2.24.0 r-circlize@0.4.16
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://www.r-project.org
Licenses: GPL 3
Synopsis: Tidy Implementation of Heatmap
Description:

This is a tidy implementation for heatmap. At the moment it is based on the (great) package ComplexHeatmap'. The goal of this package is to interface a tidy data frame with this powerful tool. Some of the advantages are: Row and/or columns colour annotations are easy to integrate just specifying one parameter (column names). Custom grouping of rows is easy to specify providing a grouped tbl. For example: df %>% group_by(...). Labels size adjusted by row and column total number. Default use of Brewer and Viridis palettes.

r-widgetframe 0.3.1
Propagated dependencies: r-purrr@1.0.4 r-magrittr@2.0.3 r-htmlwidgets@1.6.4 r-htmltools@0.5.8.1
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://github.com/bhaskarvk/widgetframe
Licenses: Expat
Synopsis: 'Htmlwidgets' in Responsive 'iframes'
Description:

This package provides two functions frameableWidget()', and frameWidget()'. The frameableWidget() is used to add extra code to a htmlwidget which allows is to be rendered correctly inside a responsive iframe'. The frameWidget() is a htmlwidget which displays content of another htmlwidget inside a responsive iframe'. These functions allow for easier embedding of htmlwidgets in content management systems such as wordpress', blogger etc. They also allow for separation of widget content from main HTML content where CSS of the main HTML could interfere with the widget.

r-webgestaltr 0.4.6
Propagated dependencies: r-whisker@0.4.1 r-svglite@2.2.1 r-rlang@1.1.6 r-readr@2.1.5 r-rcpp@1.0.14 r-jsonlite@2.0.0 r-igraph@2.1.4 r-httr@1.4.7 r-foreach@1.5.2 r-dplyr@1.1.4 r-dorng@1.8.6.2 r-doparallel@1.0.17 r-apcluster@1.4.13
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://github.com/bzhanglab/WebGestaltR
Licenses: LGPL 2.0+
Synopsis: Gene Set Analysis Toolkit WebGestaltR
Description:

The web version WebGestalt <https://www.webgestalt.org> supports 12 organisms, 354 gene identifiers and 321,251 function categories. Users can upload the data and functional categories with their own gene identifiers. In addition to the Over-Representation Analysis, WebGestalt also supports Gene Set Enrichment Analysis and Network Topology Analysis. The user-friendly output report allows interactive and efficient exploration of enrichment results. The WebGestaltR package not only supports all above functions but also can be integrated into other pipeline or simultaneously analyze multiple gene lists.

r-ngscopydata 1.28.0
Channel: guix-bioc
Location: guix-bioc/packages/n.scm (guix-bioc packages n)
Home page: http://www.bioconductor.org/packages/release/data/experiment/html/NGScopyData.html
Licenses: FSDG-compatible
Synopsis: Subset of BAM files of human tumor and pooled normal sequencing data (Zhao et al. 2014) for the NGScopy package
Description:

Subset of BAM files of human lung tumor and pooled normal samples by targeted panel sequencing. [Zhao et al 2014. Targeted Sequencing in Non-Small Cell Lung Cancer (NSCLC) Using the University of North Carolina (UNC) Sequencing Assay Captures Most Previously Described Genetic Aberrations in NSCLC. In preparation.] Each sample is a 10 percent random subsample drawn from the original sequencing data. The pooled normal sample has been rescaled accroding to the total number of normal samples in the "pool". Here provided is the subsampled data on chr6 (hg19).

r-fingerprint 3.5.7
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://cran.r-project.org/package=fingerprint
Licenses: GPL 2+ GPL 3+
Synopsis: Functions to Operate on Binary Fingerprint Data
Description:

This package provides functions to manipulate binary fingerprints of arbitrary length. A fingerprint is represented by an object of S4 class fingerprint. The bitwise logical functions in R are overridden so that they can be used directly with fingerprint objects. A number of distance metrics are also available. Fingerprints can be converted to Euclidean vectors (i.e., points on the unit hypersphere) and can also be folded. Arbitrary fingerprint formats can be handled via line handlers. Currently handlers are provided for CDK, MOE and BCI fingerprint data.

r-abasequence 0.1.0
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=abasequence
Licenses: GPL 3
Synopsis: Coding 'ABA' Patterns for Sequence Data
Description:

This package provides a suite of functions for analyzing sequences of events. Users can generate and code sequences based on predefined rules, with a special focus on the identification of sequences coded as ABA (when one element appears, followed by a different one, and then followed by the first). Additionally, the package offers the ability to calculate the length of consecutive ABA'-coded sequences sharing common elements. The methods implemented in this package are based on the work by Ziembowicz, K., Rychwalska, A., & Nowak, A. (2022). <doi:10.1177/10464964221118674>.

r-bondanalyst 1.0.1
Propagated dependencies: r-rdpack@2.6.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bondAnalyst
Licenses: GPL 3
Synopsis: Methods for Fixed-Income Valuation, Risk and Return
Description:

Bond Pricing and Fixed-Income Valuation of Selected Securities included here serve as a quick reference of Quantitative Methods for undergraduate courses on Fixed-Income and CFA Level I Readings on Fixed-Income Valuation, Risk and Return. CFA Institute ("CFA Program Curriculum 2020 Level I Volumes 1-6. (Vol. 5, pp. 107-151, pp. 237-299)", 2019, ISBN: 9781119593577). Barbara S. Petitt ("Fixed Income Analysis", 2019, ISBN: 9781119628132). Frank J. Fabozzi ("Handbook of Finance: Financial Markets and Instruments", 2008, ISBN: 9780470078143). Frank J. Fabozzi ("Fixed Income Analysis", 2007, ISBN: 9780470052211).

r-fanovagraph 1.5
Propagated dependencies: r-sensitivity@1.30.1 r-igraph@2.1.4 r-dicekriging@1.6.0
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=fanovaGraph
Licenses: GPL 3
Synopsis: Building Kriging Models from FANOVA Graphs
Description:

Estimation and plotting of a function's FANOVA graph to identify the interaction structure and fitting, prediction and simulation of a Kriging model modified by the identified structure. The interactive function plotManipulate() can only be run on the RStudio IDE with RStudio package manipulate loaded. RStudio is freely available (<https://rstudio.com/>), and includes package manipulate'. The equivalent function plotTk() bases on CRAN Repository packages only. For further information on the method see Fruth, J., Roustant, O., Kuhnt, S. (2014) <doi:10.1016/j.jspi.2013.11.007>.

r-gformulaice 0.1.0
Propagated dependencies: r-stringr@1.5.1 r-speedglm@0.3-5 r-rlang@1.1.6 r-reshape2@1.4.4 r-nnet@7.3-20 r-magrittr@2.0.3 r-hmisc@5.2-3 r-ggplot2@3.5.2 r-foreach@1.5.2 r-dplyr@1.1.4 r-doparallel@1.0.17 r-data-table@1.17.2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gfoRmulaICE
Licenses: Expat
Synopsis: Parametric Iterative Conditional Expectation G-Formula
Description:

This package implements iterative conditional expectation (ICE) estimators of the plug-in g-formula (Wen, Young, Robins, and Hernán (2020) <doi: 10.1111/biom.13321>). Both singly robust and doubly robust ICE estimators based on parametric models are available. The package can be used to estimate survival curves under sustained treatment strategies (interventions) using longitudinal data with time-varying treatments, time-varying confounders, censoring, and competing events. The interventions can be static or dynamic, and deterministic or stochastic (including threshold interventions). Both prespecified and user-defined interventions are available.

r-ggcleveland 0.1.0
Propagated dependencies: r-vctrs@0.6.5 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-rlang@1.1.6 r-readr@2.1.5 r-magrittr@2.0.3 r-lattice@0.22-7 r-ggplot2@3.5.2 r-egg@0.4.5 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/mpru/ggcleveland
Licenses: GPL 2
Synopsis: Implementation of Plots from Cleveland's Visualizing Data Book
Description:

William S. Cleveland's book Visualizing Data is a classic piece of literature on Exploratory Data Analysis. Although it was written several decades ago, its content is still relevant as it proposes several tools which are useful to discover patterns and relationships among the data under study, and also to assess the goodness of fit o a model. This package provides functions to produce the ggplot2 versions of the visualization tools described in this book and is thought to be used in the context of courses on Exploratory Data Analysis.

r-spatialddls 1.0.3
Dependencies: tensorflow@1.9.0 python@3.11.11
Propagated dependencies: r-zinbwave@1.30.0 r-tensorflow@2.16.0 r-summarizedexperiment@1.38.1 r-spatialexperiment@1.18.1 r-singlecellexperiment@1.30.1 r-scuttle@1.18.0 r-scran@1.36.0 r-s4vectors@0.46.0 r-rlang@1.1.6 r-reticulate@1.42.0 r-reshape2@1.4.4 r-pbapply@1.7-2 r-matrix@1.7-3 r-keras@2.15.0 r-gtools@3.9.5 r-grr@0.9.5 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-fnn@1.1.4.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://diegommcc.github.io/SpatialDDLS/
Licenses: GPL 3
Synopsis: Deconvolution of Spatial Transcriptomics Data Based on Neural Networks
Description:

Deconvolution of spatial transcriptomics data based on neural networks and single-cell RNA-seq data. SpatialDDLS implements a workflow to create neural network models able to make accurate estimates of cell composition of spots from spatial transcriptomics data using deep learning and the meaningful information provided by single-cell RNA-seq data. See Torroja and Sanchez-Cabo (2019) <doi:10.3389/fgene.2019.00978> and Mañanes et al. (2024) <doi:10.1093/bioinformatics/btae072> to get an overview of the method and see some examples of its performance.

r-viridislite 0.4.2
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/sjmgarnier/viridisLite
Licenses: Expat
Synopsis: Default color maps from matplotlib
Description:

This package is a port of the new matplotlib color maps (viridis, magma, plasma and inferno) to R. matplotlib is a popular plotting library for Python. These color maps are designed in such a way that they will analytically be perfectly perceptually-uniform, both in regular form and also when converted to black-and-white. They are also designed to be perceived by readers with the most common form of color blindness. This is the lite version of the more complete viridis package.

emacs-rfcview 0.13
Channel: guix
Location: gnu/packages/emacs-xyz.scm (gnu packages emacs-xyz)
Home page: http://www.loveshack.ukfsn.org/emacs
Licenses: GPL 3+
Synopsis: Prettify Request for Comments (RFC) documents
Description:

The Internet Engineering Task Force (IETF) and the Internet Society (ISOC) publish various Internet-related protocols and specifications as "Request for Comments" (RFC) documents and Internet Standard (STD) documents. RFCs and STDs are published in a simple text form. This package provides an Emacs major mode, rfcview-mode, which makes it more pleasant to read these documents in Emacs. It prettifies the text and adds hyperlinks/menus for easier navigation. It also provides functions for browsing the index of RFC documents and fetching them from remote servers or local directories.

r-funstattest 1.0.3
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-pbapply@1.7-2 r-matrix@1.7-3 r-magrittr@2.0.3 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-distr@2.9.7 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://plmlab.math.cnrs.fr/gdurif/funStatTest/
Licenses: AGPL 3+
Synopsis: Statistical Testing for Functional Data
Description:

Implementation of two sample comparison procedures based on median-based statistical tests for functional data, introduced in Smida et al (2022) <doi:10.1080/10485252.2022.2064997>. Other competitive state-of-the-art approaches proposed by Chakraborty and Chaudhuri (2015) <doi:10.1093/biomet/asu072>, Horvath et al (2013) <doi:10.1111/j.1467-9868.2012.01032.x> or Cuevas et al (2004) <doi:10.1016/j.csda.2003.10.021> are also included in the package, as well as procedures to run test result comparisons and power analysis using simulations.

r-fastlogitme 0.1.0
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=fastlogitME
Licenses: GPL 2+ GPL 3+
Synopsis: Basic Marginal Effects for Logit Models
Description:

Calculates marginal effects based on logistic model objects such as glm or speedglm at the average (default) or at given values using finite differences. It also returns confidence intervals for said marginal effects and the p-values, which can easily be used as input in stargazer. The function only returns the essentials and is therefore much faster but not as detailed as other functions available to calculate marginal effects. As a result, it is highly suitable for large datasets for which other packages may require too much time or calculating power.

r-samplevadir 1.0.0
Propagated dependencies: r-splitstackshape@1.4.8 r-lubridate@1.9.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/tswanson222/sampleVADIR
Licenses: GPL 3+
Synopsis: Draw Stratified Samples from the VADIR Database
Description:

Affords researchers the ability to draw stratified samples from the U.S. Department of Veteran's Affairs/Department of Defense Identity Repository (VADIR) database according to a variety of population characteristics. The VADIR database contains information for all veterans who were separated from the military after 1980. The central utility of the present package is to integrate data cleaning and formatting for the VADIR database with the stratification methods described by Mahto (2019) <https://CRAN.R-project.org/package=splitstackshape>. Data from VADIR are not provided as part of this package.

r-surveygraph 0.1.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://surveygraph.ie/
Licenses: Expat
Synopsis: Network Representations of Attitudes
Description:

This package provides a tool for computing network representations of attitudes, extracted from tabular data such as sociological surveys. Development of surveygraph software and training materials was initially funded by the European Union under the ERC Proof-of-concept programme (ERC, Attitude-Maps-4-All, project number: 101069264). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

r-salesforcer 1.0.2
Propagated dependencies: r-zip@2.3.3 r-xml2@1.3.8 r-xml@3.99-0.18 r-vctrs@0.6.5 r-tibble@3.2.1 r-rlist@0.4.6.2 r-rlang@1.1.6 r-readr@2.1.5 r-purrr@1.0.4 r-mime@0.13 r-lubridate@1.9.4 r-lifecycle@1.0.4 r-jsonlite@2.0.0 r-httr@1.4.7 r-dplyr@1.1.4 r-data-table@1.17.2 r-curl@6.2.2 r-base64enc@0.1-3 r-anytime@0.3.11
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/StevenMMortimer/salesforcer
Licenses: Expat
Synopsis: An Implementation of 'Salesforce' APIs Using Tidy Principles
Description:

This package provides functions connecting to the Salesforce Platform APIs (REST, SOAP, Bulk 1.0, Bulk 2.0, Metadata, Reports and Dashboards) <https://trailhead.salesforce.com/content/learn/modules/api_basics/api_basics_overview>. "API" is an acronym for "application programming interface". Most all calls from these APIs are supported as they use CSV, XML or JSON data that can be parsed into R data structures. For more details please see the Salesforce API documentation and this package's website <https://stevenmmortimer.github.io/salesforcer/> for more information, documentation, and examples.

r-stratamatch 0.1.9
Propagated dependencies: r-survival@3.8-3 r-rlang@1.1.6 r-magrittr@2.0.3 r-hmisc@5.2-3 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/raikens1/stratamatch
Licenses: GPL 3
Synopsis: Stratification and Matching for Large Observational Data Sets
Description:

This package provides a pilot matching design to automatically stratify and match large datasets. The manual_stratify() function allows users to manually stratify a dataset based on categorical variables of interest, while the auto_stratify() function does automatically by allocating a held-aside (pilot) data set, fitting a prognostic score (see Hansen (2008) <doi:10.1093/biomet/asn004>) on the pilot set, and stratifying the data set based on prognostic score quantiles. The strata_match() function then does optimal matching of the data set in parallel within strata.

r-saltsampler 1.1.0
Propagated dependencies: r-lattice@0.22-7
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SALTSampler
Licenses: Modified BSD
Synopsis: Efficient Sampling on the Simplex
Description:

The SALTSampler package facilitates Monte Carlo Markov Chain (MCMC) sampling of random variables on a simplex. A Self-Adjusting Logit Transform (SALT) proposal is used so that sampling is still efficient even in difficult cases, such as those in high dimensions or with parameters that differ by orders of magnitude. Special care is also taken to maintain accuracy even when some coordinates approach 0 or 1 numerically. Diagnostic and graphic functions are included in the package, enabling easy assessment of the convergence and mixing of the chain within the constrained space.

r-spbsampling 1.3.5
Propagated dependencies: r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=Spbsampling
Licenses: GPL 3
Synopsis: Spatially Balanced Sampling
Description:

Selection of spatially balanced samples. In particular, the implemented sampling designs allow to select probability samples well spread over the population of interest, in any dimension and using any distance function (e.g. Euclidean distance, Manhattan distance). For more details, Pantalone F, Benedetti R, and Piersimoni F (2022) <doi:10.18637/jss.v103.c02>, Benedetti R and Piersimoni F (2017) <doi:10.1002/bimj.201600194>, and Benedetti R and Piersimoni F (2017) <arXiv:1710.09116>. The implementation has been done in C++ through the use of Rcpp and RcppArmadillo'.

r-simbkmrdata 0.2.1
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=simBKMRdata
Licenses: GPL 3+
Synopsis: Helper Functions for Bayesian Kernel Machine Regression
Description:

This package provides a suite of helper functions to support Bayesian Kernel Machine Regression (BKMR) analyses in environmental health research. It enables the simulation of realistic multivariate exposure data using Multivariate Skewed Gamma distributions, estimation of distributional parameters by subgroup, and application of adaptive, data-driven thresholds for feature selection via Posterior Inclusion Probabilities (PIPs). It is especially suited for handling skewed exposure data and enhancing the interpretability of BKMR results through principled variable selection. The methodology is shown in Hasan et. al. (2025) <doi:10.1101/2025.04.14.25325822>.

Page: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528
Total results: 36659