This package provides a collection of wrapper functions for common variable and dataset manipulation workflows primarily used by iNZight
', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions. Additionally, many of the functions return the tidyverse code used to obtain the result in an effort to bridge the gap between GUI and coding.
This package provides comprehensive tools to scrape and analyze data from the MDPI journals. It allows users to extract metrics such as submission-to-acceptance times, article types, and whether articles are part of special issues. The package can also visualize this information through plots. Additionally, MDPIexploreR
offers tools to explore patterns of self-citations within articles and provides insights into guest-edited special issues.
Package for processing downloaded MODIS Calibrated radiances Product HDF files. Specifically, MOD02 calibrated radiance product files, and the associated MOD03 geolocation files (for MODIS-TERRA). The package will be most effective if the user installs MRTSwath (MODIS Reprojection Tool for swath products; <https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath>, and adds the directory with the MRTSwath executable to the default R PATH by editing ~/.Rprofile.
This package provides datasets associated with the gap package. Currently, it includes an example data for regional association plot (CDKN), an example data for a genomewide association meta-analysis (OPG), data in studies of Parkinson's diease (PD), ALHD2 markers and alcoholism (aldh2), APOE/APOC1 markers and Schizophrenia (apoeapoc), cystic fibrosis (cf), a Olink/INF panel (inf1), Manhattan plots with (hr1420, mhtdata) and without (w4) gene annotations.
Measuring child development starts by collecting responses to developmental milestones, such as "able to sit" or "says two words". There are many ways to combine such responses into summaries. The package bundles publicly available datasets with individual milestone data for children aged 0-5 years, with the aim of supporting the construction, evaluation, validation and interpretation of methodologies that aggregate milestone data into informative measures of child development.
This high-level API client provides open access to cryptocurrency market data, sentiment indicators, and interactive charting tools. The data is sourced from major cryptocurrency exchanges via curl and returned in xts'-format. The data comes in open, high, low, and close (OHLC) format with flexible granularity, ranging from seconds to months. This flexibility makes it ideal for developing and backtesting trading strategies or conducting detailed market analysis.
Given two samples of size n_1 and n_2 from a data set where each sample consists of K functional observations (channels), each recorded on T grid points, the function energy method implements a hypothesis test of equality of channel-wise mean at each channel using the bootstrapped distribution of maximum energy to control family wise error. The function energy_method_complex accomodates complex valued functional observations.
This package provides a lightweight package to compute Maximal Overlap Discrete Wavelet Transform (MODWT) and à Trous Discrete Wavelet Transform by leveraging the power of Rcpp to make these operations fast. This package was designed for use in forecasting, and allows users avoid the inclusion of future data when performing wavelet decomposition of time series. See Quilty and Adamowski (2018) <doi:10.1016/j.jhydrol.2018.05.003>.
Fits the logistic equation to microbial growth curve data (e.g., repeated absorbance measurements taken from a plate reader over time). From this fit, a variety of metrics are provided, including the maximum growth rate, the doubling time, the carrying capacity, the area under the logistic curve, and the time to the inflection point. Method described in Sprouffske and Wagner (2016) <doi:10.1186/s12859-016-1016-7>.
This package provides functions for drawing node-and-edge graphs that have been laid out by graphviz'. This provides an alternative rendering to that provided by the Rgraphviz package, with two main advantages: the rendering provided by gridGraphviz
should be more similar to what graphviz itself would draw; and rendering with grid allows for post-hoc customisations using the named viewports and grobs that gridGraphviz
produces.
This package provides functions for fitting various penalized parametric and semi-parametric mixture cure models with different penalty functions, testing for a significant cure fraction, and testing for sufficient follow-up as described in Fu et al (2022)<doi:10.1002/sim.9513> and Archer et al (2024)<doi:10.1186/s13045-024-01553-6>. False discovery rate controlled variable selection is provided using model-X knock-offs.
Framework for the Item Response Theory analysis of dichotomous and ordinal polytomous outcomes under the assumption of within-item multidimensionality and discreteness of the latent traits. The fitting algorithms allow for missing responses and for different item parametrizations and are based on the Expectation-Maximization paradigm. Individual covariates affecting the class weights may be included in the new version together with possibility of constraints on all model parameters.
Explore, diagnose, and compare variant calls using filters. The VariantTools package supports a workflow for loading data, calling single sample variants and tumor-specific somatic mutations or other sample-specific variant types (e.g., RNA editing). Most of the functions operate on alignments (BAM files) or datasets of called variants. The user is expected to have already aligned the reads with a separate tool, e.g., GSNAP via gmapR.
The scRepertoire package was built to process data derived from the 10x Genomics Chromium Immune Profiling for both TCR and Ig enrichment workflows and subsequently interacts with the popular Seurat and SingleCellExperiment R packages. It also allows for general analysis of single-cell clonotype information without the use of expression information. The package functions as a wrapper for Startrac and powerTCR R packages.
This package provides a Python 3 ported version of Python 2.7’s random
module. It has also been back-ported to work in Python 2.6.
In Python 3, the implementation of randrange()
was changed, so that even with the same seed you get different sequences in Python 2 and 3.
This package closes that gap, allowing stable random number generation between the different Python versions.
An interface to Azure CosmosDB
': <https://azure.microsoft.com/en-us/services/cosmos-db/>. On the admin side, AzureCosmosR
provides functionality to create and manage Cosmos DB instances in Microsoft's Azure cloud. On the client side, it provides an interface to the Cosmos DB SQL API, letting the user store and query documents and attachments in Cosmos DB'. Part of the AzureR
family of packages.
Adaptive smoothing functions for estimating the blood oxygenation level dependent (BOLD) effect by using functional Magnetic Resonance Imaging (fMRI
) data, based on adaptive Gauss Markov random fields, for real as well as simulated data. The implemented models make use of efficient Markov Chain Monte Carlo methods. Implemented methods are based on the research developed by A. Brezger, L. Fahrmeir, A. Hennerfeind (2007) <https://www.jstor.org/stable/4626770>.
The Epidemic Type Aftershock Sequence (ETAS) model is one of the best-performing methods for modeling and forecasting earthquake occurrences. This package implements Bayesian estimation routines to draw samples from the full posterior distribution of the model parameters, given an earthquake catalog. The paper on which this package is based is Gordon J. Ross - Bayesian Estimation of the ETAS Model for Earthquake Occurrences (2016), available from the below URL.
Cancer RADAR is a project which aim is to develop an infrastructure that allows quantifying the risk of cancer by migration background across Europe. This package contains a set of functions cancer registries partners should use to reshape 5 year-age group cancer incidence data into a set of summary statistics (see Boyle & Parkin (1991, ISBN:978-92-832-1195-2)) in lines with Cancer RADAR data protections rules.
Graphically display the (causal) effect of a continuous variable on a time-to-event outcome using multiple different types of plots based on g-computation. Those functions include, among others, survival area plots, survival contour plots, survival quantile plots and 3D surface plots. Due to the use of g-computation, all plot allow confounder-adjustment naturally. For details, see Robin Denz, Nina Timmesfeld (2023) <doi:10.1097/EDE.0000000000001630>.
Compare C-statistics (concordance statistics) between two survival models, using either bootstrap resampling (Harrell's C) or Uno's C with perturbation-resampling (from the survC1
package). Returns confidence intervals and a p-value for the difference in C-statistics. Useful for evaluating and comparing predictive performance of survival models. Methods implemented for Uno's C are described in Uno et al. (2011) <doi:10.1002/sim.4154>.
This package provides a function toolkit to facilitate reproducible RNA-Seq Differential Gene Expression (DGE) analysis (Law (2015) <doi:10.12688/f1000research.9005.3>). The tools include both analysis work-flow and utility functions: mapping/unit conversion, count normalization, accounting for unknown covariates, and more. This is a complement/cohort to the DGEobj package that provides a flexible container to manage and annotate Differential Gene Expression analysis results.
Fire behavior prediction models, including the Scott & Reinhardt's (2001) Rothermel Wildland Fire Modelling System <DOI:10.2737/RMRS-RP-29> and Alexander et al.'s (2006) Crown Fire Initiation & Spread model <DOI:10.1016/j.foreco.2006.08.174>. Also contains sample datasets, estimation of fire behavior prediction model inputs (e.g., fuel moisture, canopy characteristics, wind adjustment factor), results visualization, and methods to estimate fire weather hazard.
This package provides access to low-level operating system mechanisms for performing atomic operations on shared data structures. Mutexes provide shared and exclusive locks. Semaphores act as counters. Message queues move text strings from one process to another. All these interprocess communication (IPC) tools can optionally block with or without a timeout. Implemented using the cross-platform boost C++ library <https://www.boost.org/doc/libs/release/libs/interprocess/>.