Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of the Rapid Assessment Method for Older People or RAM-OP <https://www.helpage.org/resource/rapid-assessment-method-for-older-people-ramop-manual/>. It provides various functions that allow the user to design and plan the assessment and analyse the collected data. RAM-OP provides accurate and reliable estimates of the needs of older people.
Aids in the analysis of genes influencing cancer survival by including a principal function, calculator(), which calculates the P-value for each provided gene under the optimal cutoff in cancer survival studies. Grounded in methodologies from significant works, this package references Therneau's survival package (Therneau, 2024; <https://CRAN.R-project.org/package=survival>) and the survival analysis extensions by Therneau and Grambsch (2000, ISBN 0-387-98784-3). It also integrates the survminer package by Kassambara et al. (2021; <https://CRAN.R-project.org/package=survminer>), enhancing survival curve visualizations with ggplot2'.
This package implements a tree-based method specifically designed for personalized medicine applications. By using genomic and mutational data, ODT efficiently identifies optimal drug recommendations tailored to individual patient profiles. The ODT algorithm constructs decision trees that bifurcate at each node, selecting the most relevant markers (discrete or continuous) and corresponding treatments, thus ensuring that recommendations are both personalized and statistically robust. This iterative approach enhances therapeutic decision-making by refining treatment suggestions until a predefined group size is achieved. Moreover, the simplicity and interpretability of the resulting trees make the method accessible to healthcare professionals. Includes functions for training the decision tree, making predictions on new samples or patients, and visualizing the resulting tree. For detailed insights into the methodology, please refer to Gimeno et al. (2023) <doi:10.1093/bib/bbad200>.
This package creates mock data for testing and package development for the Observational Medical Outcomes Partnership common data model. The package offers functions crafted with pipeline-friendly implementation, enabling users to effortlessly include only the necessary tables for their testing needs.
This package implements Bayesian data analyses of balanced repeatability and reproducibility studies with ordinal measurements. Model fitting is based on MCMC posterior sampling with rjags'. Function ordinalRR() directly carries out the model fitting, and this function has the flexibility to allow the user to specify key aspects of the model, e.g., fixed versus random effects. Functions for preprocessing data and for the numerical and graphical display of a fitted model are also provided. There are also functions for displaying the model at fixed (user-specified) parameters and for simulating a hypothetical data set at a fixed (user-specified) set of parameters for a random-effects rater population. For additional technical details, refer to Culp, Ryan, Chen, and Hamada (2018) and cite this Technometrics paper when referencing any aspect of this work. The demo of this package reproduces results from the Technometrics paper.
This package provides a penalized regression framework that can simultaneously estimate the optimal treatment strategy and identify important variables. Appropriate for either censored or uncensored continuous response.
For the problem of indirect treatment comparison with limited subject-level data, this package provides tools for model-based standardisation with several different computation approaches. See Remiroâ Azócar A, Heath A, Baio G (2022) "Parametric Gâ computation for compatible indirect treatment comparisons with limited individual patient data", Res. Synth. Methods, 1â 31. ISSN 1759-2879, <doi:10.1002/jrsm.1565>.
High-performance implementation of 36 optimal binning algorithms (16 categorical, 20 numerical) for Weight of Evidence ('WoE') transformation, credit scoring, and risk modeling. Includes advanced methods such as Mixed Integer Linear Programming ('MILP'), Genetic Algorithms, Simulated Annealing, and Monotonic Regression. Features automatic method selection based on Information Value ('IV') maximization, strict monotonicity enforcement, and efficient handling of large datasets via Rcpp'. Fully integrated with the tidymodels ecosystem for building robust machine learning pipelines. Based on methods described in Siddiqi (2006) <doi:10.1002/9781119201731> and Navas-Palencia (2020) <doi:10.48550/arXiv.2001.08025>.
Makes it easy to display descriptive information on a data set. Getting an easy overview of a data set by displaying and visualizing sample information in different tables (e.g., time and scope conditions). The package also provides publishable LaTeX code to present the sample information.
This package provides dates for public and school holidays for a number of countries and their subdivisions through the OpenHolidays API at <https://www.openholidaysapi.org/en/>.
Crawler for OJS pages and scraper for meta-data from articles. You can crawl OJS archives, issues, articles, galleys, and search results. You can scrape articles metadata from their head tag in html, or from Open Archives Initiative ('OAI') records. Most of these functions rely on OJS routing conventions (<https://docs.pkp.sfu.ca/dev/documentation/en/architecture-routes>).
Calculates autoecological data (optima and tolerance ranges) of a biological species given an environmental matrix. The package calculates by weighted averaging, using the number of occurrences to adjust the tolerance assigned to each taxon to estimate optima and tolerance range in cases where taxa have unequal occurrences. See the detailed methodology by Birks et al. (1990) <doi:10.1098/rstb.1990.0062>, and a case example by Potapova and Charles (2003) <doi:10.1046/j.1365-2427.2003.01080.x>.
This package provides a tool for visualizing numerical data (e.g., gene expression, protein abundance) on predefined anatomical maps of human/mouse organs and subcellular organelles. It supports customization of color schemes, filtering by organ systems (for organisms) or organelle types, and generation of optional bar charts for quantitative comparison. The package integrates coordinate data for organs and organelles to plot anatomical/subcellular contours, mapping data values to specific structures for intuitive visualization of biological data distribution.The underlying method was described in the preprint by Zhou et al. (2022) <doi:10.1101/2022.09.07.506938>.
An RStudio addin to assist with removing objects from the global environment. Features include removing objects according to name patterns and object type. During the course of an analysis, temporary objects are often created and this tool assists with removing them quickly. This can be useful when memory management within R is important.
Overture Maps offers free and open geospatial map data sourced from various providers and standardized to a common schema. This tool allows you to download Overture Maps data for a specific region of interest and convert it to several different file formats. For more information, visit <https://overturemaps.org/download/>.
In biomedical studies, researchers are often interested in assessing the association between one or more ordinal explanatory variables and an outcome variable, at the same time adjusting for covariates of any type. The outcome variable may be continuous, binary, or represent censored survival times. In the absence of a precise knowledge of the response function, using monotonicity constraints on the ordinal variables improves efficiency in estimating parameters, especially when sample sizes are small. This package implements an active set algorithm that efficiently computes such estimators.
Setup and connect to OpenTripPlanner (OTP) <http://www.opentripplanner.org/>. OTP is an open source platform for multi-modal and multi-agency journey planning written in Java'. The package allows you to manage a local version or connect to remote OTP server to find walking, cycling, driving, or transit routes. This package has been peer-reviewed by rOpenSci (v. 0.2.0.0).
O-statistics, or overlap statistics, measure the degree of community-level trait overlap. They are estimated by fitting nonparametric kernel density functions to each speciesâ trait distribution and calculating their areas of overlap. For instance, the median pairwise overlap for a community is calculated by first determining the overlap of each species pair in trait space, and then taking the median overlap of each species pair in a community. This median overlap value is called the O-statistic (O for overlap). The Ostats() function calculates separate univariate overlap statistics for each trait, while the Ostats_multivariate() function calculates a single multivariate overlap statistic for all traits. O-statistics can be evaluated against null models to obtain standardized effect sizes. Ostats is part of the collaborative Macrosystems Biodiversity Project "Local- to continental-scale drivers of biodiversity across the National Ecological Observatory Network (NEON)." For more information on this project, see the Macrosystems Biodiversity Website (<https://neon-biodiversity.github.io/>). Calculation of O-statistics is described in Read et al. (2018) <doi:10.1111/ecog.03641>, and a teaching module for introducing the underlying biological concepts at an undergraduate level is described in Grady et al. (2018) <http://tiee.esa.org/vol/v14/issues/figure_sets/grady/abstract.html>.
This package provides an Interface to Web-Services defined as standards by the Open Geospatial Consortium (OGC), including Web Feature Service (WFS) for vector data, Web Coverage Service (WCS), Catalogue Service (CSW) for ISO/OGC metadata, Web Processing Service (WPS) for data processes, and associated standards such as the common web-service specification (OWS) and OGC Filter Encoding. Partial support is provided for the Web Map Service (WMS). The purpose is to add support for additional OGC service standards such as Web Coverage Processing Service (WCPS), the Sensor Observation Service (SOS), or even new standard services emerging such OGC API or SensorThings.
Accesses high resolution raster maps using the OpenStreetMap protocol. Dozens of road, satellite, and topographic map servers are directly supported. Additionally raster maps may be constructed using custom tile servers. Maps can be plotted using either base graphics, or ggplot2. This package is not affiliated with the OpenStreetMap.org mapping project.
This package provides an Interface to Open Collaboration Services OCS (<https://www.open-collaboration-services.org/>) REST API.
This package provides functionality to construct standardised tables from health care data formatted according to the Observational Medical Outcomes Partnership (OMOP) Common Data Model. The package includes tools to build key tables such as observation period and drug era, among others.
Facilitates the gathering of biodiversity occurrence data from disparate sources. Metadata is managed throughout the process to facilitate reporting and enhanced ability to repeat analyses.
This package provides a client for the open-source monitoring and alerting toolkit, Prometheus', that emits metrics in the OpenMetrics format. Allows users to automatically instrument Plumber and Shiny applications, collect standard process metrics, as well as define custom counter, gauge, and histogram metrics of their own.