Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create phantom variables, which are variables that were not observed, for the purpose of sensitivity analyses for structural equation models. The package makes it easier for a user to test different combinations of covariances between the phantom variable(s) and observed variables. The package may be used to assess a model's or effect's sensitivity to temporal bias (e.g., if cross-sectional data were collected) or confounding bias.
Implementations of several methods for principal component analysis using the L1 norm. The package depends on COIN-OR Clp version >= 1.17.4. The methods implemented are PCA-L1 (Kwak 2008) <DOI:10.1109/TPAMI.2008.114>, L1-PCA (Ke and Kanade 2003, 2005) <DOI:10.1109/CVPR.2005.309>, L1-PCA* (Brooks, Dula, and Boone 2013) <DOI:10.1016/j.csda.2012.11.007>, L1-PCAhp (Visentin, Prestwich and Armagan 2016) <DOI:10.1007/978-3-319-46227-1_37>, wPCA (Park and Klabjan 2016) <DOI: 10.1109/ICDM.2016.0054>, awPCA (Park and Klabjan 2016) <DOI: 10.1109/ICDM.2016.0054>, PCA-Lp (Kwak 2014) <DOI:10.1109/TCYB.2013.2262936>, and SharpEl1-PCA (Brooks and Dula, submitted).
This package provides a set of functions to efficiently recognize and clean the continuous dorsal pattern of a female brown anole lizard (Anolis sagrei) traced from ImageJ', an open platform for scientific image analysis (see <https://imagej.net> for more information), and extract common features such as the pattern sinuosity indices, coefficient of variation, and max-min width.
Data sets and functions used in the polish book "Przewodnik po pakiecie R" (The Hitchhiker's Guide to the R). See more at <http://biecek.pl/R>. Among others you will find here data about housing prices, cancer patients, running times and many others.
The Penn World Table 8.x provides information on relative levels of income, output, inputs, and productivity for 167 countries between 1950 and 2011.
Calculation of the parametric, nonparametric confidence intervals for the difference or ratio of location parameters, nonparametric confidence interval for the Behrens-Fisher problem and for the difference, ratio and odds-ratio of binomial proportions for comparison of independent samples. Common wrapper functions to split data sets and apply confidence intervals or tests to these subsets. A by-statement allows calculation of CI separately for the levels of further factors. CI are not adjusted for multiplicity.
Fit calibrations curves for clinical prediction models and calculate several associated metrics (Eavg, E50, E90, Emax). Ideally predicted probabilities from a prediction model should align with observed probabilities. Calibration curves relate predicted probabilities (or a transformation thereof) to observed outcomes via a flexible non-linear smoothing function. pmcalibration allows users to choose between several smoothers (regression splines, generalized additive models/GAMs, lowess, loess). Both binary and time-to-event outcomes are supported. See Van Calster et al. (2016) <doi:10.1016/j.jclinepi.2015.12.005>; Austin and Steyerberg (2019) <doi:10.1002/sim.8281>; Austin et al. (2020) <doi:10.1002/sim.8570>.
Using the R package reticulate', this package creates an interface to the pysd toolset. The package provides an R interface to a number of pysd functions, and can read files in Vensim mdl format, and xmile format. The resulting simulations are returned as a tibble', and from that the results can be processed using dplyr and ggplot2'. The package has been tested using python3'.
This package provides tools from the domain of graph theory can be used to quantify the complexity and vulnerability to failure of a software package. That is the guiding philosophy of this package. pkgnet provides tools to analyze the dependencies between functions in an R package and between its imported packages. See the pkgnet website for vignettes and other supplementary information.
Estimates DNA target concentration by classifying digital PCR (polymerase chain reaction) droplets as positive, negative, or rain, using Expectation-Maximization Clustering. The fitting is accomplished using the EMMIXskew R package (v. 1.0.3) by Kui Wang, Angus Ng, and Geoff McLachlan (2018) as based on their paper "Multivariate Skew t Mixture Models: Applications to Fluorescence-Activated Cell Sorting Data" <doi:10.1109/DICTA.2009.88>.
Quantile regression with fixed effects is a general model for longitudinal data. Here we proposed to solve it by several methods. The estimation methods include three loss functions as check, asymmetric least square and asymmetric Huber functions; and three structures as simple regression, fixed effects and fixed effects with penalized intercepts by LASSO.
This package provides tools for interacting with data from experiments done in microtiter plates. Easily read in plate-shaped data and convert it to tidy format, combine plate-shaped data with tidy data, and view tidy data in plate shape.
ProTracker is a popular music tracker to sequence music on a Commodore Amiga machine. This package offers the opportunity to import, export, manipulate and play ProTracker module files. Even though the file format could be considered archaic, it still remains popular to this date. This package intends to contribute to this popularity and therewith keeping the legacy of ProTracker and the Commodore Amiga alive. This package is the successor of ProTrackR providing better performance.
Google Pathways Language Model 2 (PaLM 2) as a coding and writing assistant designed for R'. With a range of functions, including natural language processing and coding optimization, to assist R developers in simplifying tedious coding tasks and content searching.
Functional claims reserving methods based on aggregated chain-ladder data, also known as a run-off triangle, implemented in three nonparametric algorithms (PARALLAX, REACT, and MACRAME) proposed in Maciak, Mizera, and Pešta (2022) <doi:10.1017/asb.2022.4>. Additional methods including permutation bootstrap for completed run-off triangles are also provided.
Visualizes the coverage depth of a complete plastid genome as well as the equality of its inverted repeat regions in relation to the circular, quadripartite genome structure and the location of individual genes. For more information, please see Gruenstaeudl and Jenke (2020) <doi:10.1186/s12859-020-3475-0>.
This package provides functions to estimate the kinship matrix of individuals from a large set of biallelic SNPs, and extract inbreeding coefficients and the generalized FST (Wright's fixation index). Method described in Ochoa and Storey (2021) <doi:10.1371/journal.pgen.1009241>.
This package provides functions used to fit and test the phenology of species based on counts. Based on Girondot, M. (2010) <doi:10.3354/esr00292> for the phenology function, Girondot, M. (2017) <doi:10.1016/j.ecolind.2017.05.063> for the convolution of negative binomial, Girondot, M. and Rizzo, A. (2015) <doi:10.2993/etbi-35-02-337-353.1> for Bayesian estimate, Pfaller JB, ..., Girondot M (2019) <doi:10.1007/s00227-019-3545-x> for tag-loss estimate, Hancock J, ..., Girondot M (2019) <doi:10.1016/j.ecolmodel.2019.04.013> for nesting history, Laloe J-O, ..., Girondot M, Hays GC (2020) <doi:10.1007/s00227-020-03686-x> for aggregating several seasons.
The Preference Selection Index Method was created in (2010) and provides an innovative approach to determining the relative importance of criteria without pairwise comparisons, unlike the Analytic Hierarchy Process. The Preference Selection Index Method uses statistical methods to calculate the criteria weights and reflects their relative importance in the final decision-making process, offering an objective and non-subjective solution. This method is beneficial in multi-criteria decision analysis. The PSIM package provides a practical and accessible tool for implementing the Preference Selection Index Method in R. It calculates the weights of criteria and makes the method available to researchers, analysts, and professionals without the need to develop complex calculations manually. More details about the Preference Selection Index Method can be found in Maniya K. and Bhatt M. G.(2010) <doi:10.1016/j.matdes.2009.11.020>.
The portmanteau local feature discriminant approach first identifies the local discriminant features and their differential structures, then constructs the discriminant rule by pooling the identified local features together. This method is applicable to high-dimensional matrix-variate data. See the paper by Xu, Luo and Chen (2023, <doi:10.1007/s13171-021-00255-2>).
The goal of planets is to provide of very simple and accessible data containing basic information from all known planets.
This package provides an interface to PDFMiner <https://github.com/pdfminer/pdfminer.six> a Python package for extracting information from PDF'-files. PDFMiner has the goal to get all information available in a PDF'-file, position of the characters, font type, font size and informations about lines. Which makes it the perfect starting point for extracting tables from PDF'-files. More information can be found in the package README'-file.
General implementation of core function from phase-type theory. PhaseTypeR can be used to model continuous and discrete phase-type distributions, both univariate and multivariate. The package includes functions for outputting the mean and (co)variance of phase-type distributions; their density, probability and quantile functions; functions for random draws; functions for reward-transformation; and functions for plotting the distributions as networks. For more information on these functions please refer to Bladt and Nielsen (2017, ISBN: 978-1-4939-8377-3) and Campillo Navarro (2019) <https://orbit.dtu.dk/en/publications/order-statistics-and-multivariate-discrete-phase-type-distributio>.
Projection Pursuit (PP) algorithm for dimension reduction based on Gaussian Mixture Models (GMMs) for density estimation using Genetic Algorithms (GAs) to maximise an approximated negentropy index. For more details see Scrucca and Serafini (2019) <doi:10.1080/10618600.2019.1598871>.