This package provides tools and workflow to choose design parameters in Bayesian adaptive single-arm phase II trial designs with binary endpoint (response, success) with possible stopping for efficacy and futility at interim analyses. Also contains routines to determine and visualize operating characteristics. See Kopp-Schneider et al. (2018) <doi:10.1002/bimj.201700209>.
Clean, decompose and aggregate univariate time series following the procedure "Cyclic/trend decomposition using bin interpolation" and the Logbox method for flagging outliers, both detailed in Ritter, F.: Technical note: A procedure to clean, decompose, and aggregate time series, Hydrol. Earth Syst. Sci., 27, 349â 361, <doi:10.5194/hess-27-349-2023>, 2023.
Estimation of fully and partially observed Exponential-Family Random Network Models (ERNM). Exponential-family Random Graph Models (ERGM) and Gibbs Fields are special cases of ERNMs and can also be estimated with the package. Please cite Fellows and Handcock (2012), "Exponential-family Random Network Models" available at <doi:10.48550/arXiv.1208.0121>
.
When you want to install R package or download file from GitHub
, but you can't access GitHub
, this package helps you install R packages or download file from GitHub
via the proxy website <https://gh-proxy.com/> or <https://ghfast.top/>, which is in real-time sync with GitHub
.
Impute observed values below the limit of detection (LOD) via censored likelihood multiple imputation (CLMI) in single-pollutant models, developed by Boss et al (2019) <doi:10.1097/EDE.0000000000001052>. CLMI handles exposure detection limits that may change throughout the course of exposure assessment. lodi provides functions for imputing and pooling for this method.
This package implements the One Rule (OneR
) Machine Learning classification algorithm (Holte, R.C. (1993) <doi:10.1023/A:1022631118932>) with enhancements for sophisticated handling of numeric data and missing values together with extensive diagnostic functions. It is useful as a baseline for machine learning models and the rules are often helpful heuristics.
The portmanteau local feature discriminant approach first identifies the local discriminant features and their differential structures, then constructs the discriminant rule by pooling the identified local features together. This method is applicable to high-dimensional matrix-variate data. See the paper by Xu, Luo and Chen (2023, <doi:10.1007/s13171-021-00255-2>).
Given a project schedule and associated costs, this package calculates the earned value to date. It is an implementation of Project Management Body of Knowledge (PMBOK) methodologies (reference Project Management Institute. (2021). A guide to the Project Management Body of Knowledge (PMBOK guide) (7th ed.). Project Management Institute, Newtown Square, PA, ISBN 9781628256673 (pdf)).
Quantile-based estimators (Q-estimators) can be used to fit any parametric distribution, using its quantile function. Q-estimators are usually more robust than standard maximum likelihood estimators. The method is described in: Sottile G. and Frumento P. (2022). Robust estimation and regression with parametric quantile functions. <doi:10.1016/j.csda.2022.107471>.
Offers Bayesian semiparametric density estimation and tail-index estimation for heavy tailed data, by using a parametric, tail-respecting transformation of the data to the unit interval and then modeling the transformed data with a purely nonparametric logistic Gaussian process density prior. Based on Tokdar et al. (2022) <doi:10.1080/01621459.2022.2104727>.
Sparsity Oriented Importance Learning (SOIL) provides a new variable importance measure for high dimensional linear regression and logistic regression from a sparse penalization perspective, by taking into account the variable selection uncertainty via the use of a sensible model weighting. The package is an implementation of Ye, C., Yang, Y., and Yang, Y. (2017+).
Strength training prescription using percent-based approach requires numerous computations and assumptions. STMr package allow users to estimate individual reps-max relationships, implement various progression tables, and create numerous set and rep schemes. The STMr package is originally created as a tool to help writing JovanoviÄ M. (2020) Strength Training Manual <ISBN:979-8604459898>.
This is a statistical tool interactive that provides multivariate statistical tests that are more powerful than traditional Hotelling T2 test and LRT (likelihood ratio test) for the vector of normal mean populations with and without contamination and non-normal populations (Henrique J. P. Alves & Daniel F. Ferreira (2019) <DOI: 10.1080/03610918.2019.1693596>).
This package provides a suite of routines for Weyl algebras. Notation follows Coutinho (1995, ISBN 0-521-55119-6, "A Primer of Algebraic D-Modules"). Uses disordR
discipline (Hankin 2022 <doi:10.48550/arXiv.2210.03856>
). To cite the package in publications, use Hankin 2022 <doi:10.48550/arXiv.2212.09230>
.
LACE is an algorithmic framework that processes single-cell somatic mutation profiles from cancer samples collected at different time points and in distinct experimental settings, to produce longitudinal models of cancer evolution. The approach solves a Boolean Matrix Factorization problem with phylogenetic constraints, by maximizing a weighed likelihood function computed on multiple time points.
This package is for genomic regions processing using command line tools such as BEDTools, BEDOPS and Tabix. These tools offer scalable and efficient utilities to perform genome arithmetic e.g indexing, formatting and merging. The bedr package's API enhances access to these tools as well as offers additional utilities for genomic regions processing.
Content-preserving transformations transformations of PDF files such as split, combine, and compress. This package interfaces directly to the qpdf
C++ API and does not require any command line utilities. Note that qpdf
does not read actual content from PDF files: to extract text and data you need the pdftools
package.
This package provides an R API to the Open Source Geometry Engine (GEOS) library and a vector format with which to efficiently store GEOS geometries. High-performance functions to extract information from, calculate relationships between, and transform geometries are provided. Finally, facilities to import and export geometry vectors to other spatial formats are provided.
Randomization-based inference for average treatment effects in potentially inexactly matched observational studies. It implements the inverse post-matching probability weighting framework proposed by the authors. The post-matching probability calculation follows the approach of Pimentel and Huang (2024) <doi:10.1093/jrsssb/qkae033>. The optimal full matching method is based on Hansen (2004) <doi:10.1198/106186006X137047>. The variance estimator extends the method proposed in Fogarty (2018) <doi:10.1111/rssb.12290> from the perfect randomization settings to the potentially inexact matching case. Comparisons are made with conventional methods, as described in Rosenbaum (2002) <doi:10.1007/978-1-4757-3692-2>, Fogarty (2018) <doi:10.1111/rssb.12290>, and Kang et al. (2016) <doi:10.1214/15-aoas894>.
Robust Clustering of Time Series (RCTS) has the functionality to cluster time series using both the classical and the robust interactive fixed effects framework. The classical framework is developed in Ando & Bai (2017) <doi:10.1080/01621459.2016.1195743>. The implementation within this package excludes the SCAD-penalty on the estimations of beta. This robust framework is developed in Boudt & Heyndels (2022) <doi:10.1016/j.ecosta.2022.01.002> and is made robust against different kinds of outliers. The algorithm iteratively updates beta (the coefficients of the observable variables), group membership, and the latent factors (which can be common and/or group-specific) along with their loadings. The number of groups and factors can be estimated if they are unknown.
This package provides a comprehensive pipeline for analyzing and interactively visualizing genomic profiles generated through commercial or custom aCGH
arrays. As inputs, rCGH
supports Agilent dual-color Feature Extraction files (.txt), from 44 to 400K, Affymetrix SNP6.0 and cytoScanHD
probeset.txt, cychp.txt, and cnchp.txt files exported from ChAS
or Affymetrix Power Tools. rCGH
also supports custom arrays, provided data complies with the expected format. This package takes over all the steps required for individual genomic profiles analysis, from reading files to profiles segmentation and gene annotations. This package also provides several visualization functions (static or interactive) which facilitate individual profiles interpretation. Input files can be in compressed format, e.g. .bz2 or .gz.
Low-rank matrix decompositions are fundamental tools and widely used for data analysis, dimension reduction, and data compression. Classically, highly accurate deterministic matrix algorithms are used for this task. However, the emergence of large-scale data has severely challenged our computational ability to analyze big data. The concept of randomness has been demonstrated as an effective strategy to quickly produce approximate answers to familiar problems such as the singular value decomposition (SVD). This package provides several randomized matrix algorithms such as the randomized singular value decomposition (rsvd
), randomized principal component analysis (rpca
), randomized robust principal component analysis (rrpca
), randomized interpolative decomposition (rid
), and the randomized CUR decomposition (rcur
). In addition several plot functions are provided.
This package provides a collection of functions related to density estimation by using Chen's (2000) idea. Mean Squared Errors (MSE) are calculated for estimated curves. For this purpose, R functions allow the distribution to be Gamma, Exponential or Weibull. For details see Chen (2000), Scaillet (2004) <doi:10.1080/10485250310001624819> and Khan and Akbar.
This package provides tools for the quantitative analysis of axon integrity in microscopy images. It implements image pre-processing, adaptive thresholding, feature extraction, and support vector machine-based classification to compute indices such as the Axon Integrity Index (AII) and Degeneration Index (DI). The package is designed for reproducible and automated analysis in neuroscience research.