Assist novice developers when preparing a single package or a set of integrated packages to submit to CRAN. Automate the following individual or batch processing: check local source packages; build local .tar.gz source files; install packages from local .tar.gz files; detect conflicts between function names in the environment.
This library makes it possible to restrict the HTTP servers that can be used by the http-client and http-client-tls libraries. This is useful when a security policy needs to, e.g., prevent connections to HTTP servers on localhost or only allow connections to a specific server.
This package provides a new S4 class integrating Simple Features with the R package sf to bring geospatial data analysis methods based on vector data to spatial transcriptomics. Also implements management of spatial neighborhood graphs and geometric operations. This pakage builds upon SpatialExperiment and SingleCellExperiment, hence methods for these parent classes can still be used.
The package provides physics students at the University of Oldenburg with a prepared document class for writing laboratory reports for the laboratory courses conducted by the Institute of Physics. The document class consists of predefinded margins and heading formats. Furthermore, it presets the headers of the pages and excludes the titlepage and table of contents from the page numbering.
An implementation of the two-sample multivariate Kolmogorov-Smirnov test described by Fasano and Franceschini (1987) <doi:10.1093/mnras/225.1.155>. This test evaluates the null hypothesis that two i.i.d. random samples were drawn from the same underlying probability distribution. The data can be of any dimension, and can be of any type (continuous, discrete, or mixed).
Facilitate phonetic transliteration between different languages. With support for both Hindi and English, this package provides a way to convert text between Hindi and English dataset. Whether you're working with multilingual data or need to convert dataset for analysis or presentation purposes, it offers a simple and efficient solution and harness the power of phonetic transliteration in your projects with this versatile package.
This package provides a suite of open-source R functions designed to produce standard metrics for forest management and ecology from forest inventory data. The overarching goal is to minimize potential inconsistencies introduced by the algorithms used to compute and summarize core forest metrics. Learn more about the purpose of the package and the specific algorithms used in the package at <https://github.com/kearutherford/BerkeleyForestsAnalytics>.
This package creates complex heatmaps for single cell RNA-seq data that simultaneously display gene expression levels (as color intensity) and expression percentages (as circle sizes). Supports gene grouping, cell type annotations, and time point comparisons. Built on top of ComplexHeatmap and integrates with Seurat objects. For more details see Gu (2022) <doi:10.1002/imt2.43> and Hao (2024) <doi:10.1038/s41587-023-01767-y>.
This package may optionally be used by students at Carmel High School in Indiana in the United States to write physics lab reports for FW physics courses. As many students are beginners at LaTeX, it also attempts to simplify the report-writing process by offering macros for commonly used notation and by automatically formatting the documents for students who will only use TeX for mathematics and not typesetting.
The main function of the package is to perform backward selection of fixed effects, forward fitting of the random effects, and post-hoc analysis using parallel capabilities. Other functionality includes the computation of ANOVAs with upper- or lower-bound p-values and R-squared values for each model term, model criticism plots, data trimming on model residuals, and data visualization. The data to run examples is contained in package LCF_data.
tidySingleCellExperiment is an adapter that abstracts the SingleCellExperiment container in the form of a tibble'. This allows *tidy* data manipulation, nesting, and plotting. For example, a tidySingleCellExperiment is directly compatible with functions from tidyverse packages `dplyr` and `tidyr`, as well as plotting with `ggplot2` and `plotly`. In addition, the package provides various utility functions specific to single-cell omics data analysis (e.g., aggregation of cell-level data to pseudobulks).
Illumina HumanWGv2 annotation data (chip illuminaHumanv2BeadID) assembled using data from public repositories to be used with data summarized from bead-level data with numeric ArrayAddressIDs as keys. Illumina probes with a No match or Bad quality score were removed prior to annotation. See http://www.compbio.group.cam.ac.uk/Resources/Annotation/index.html and Barbosa-Morais et al (2010) A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Research.
pytest-random-order is a Pytest plugin that randomizes the order of tests. This can be useful to detect a test that passes just because it happens to run after an unrelated test that leaves the system in a favourable state. The plugin allows user to control the level of randomness they want to introduce and to disable reordering on subsets of tests. Tests can be rerun in a specific order by passing a seed value reported in a previous test run.
Execute the self-controlled case series (SCCS) design using observational data in the OMOP Common Data Model. Extracts all necessary data from the database and transforms it to the format required for SCCS. Age and season can be modeled using splines assuming constant hazard within calendar months. Event-dependent censoring of the observation period can be corrected for. Many exposures can be included at once (MSCCS), with regularization on all coefficients except for the exposure of interest. Includes diagnostics for all major assumptions of the SCCS.
It computes full conformal, split conformal and multi-split conformal prediction regions when the response variable is multivariate (i.e. dimension is greater than one). Moreover, the package also contains plot functions to visualize the output of the full and split conformal functions. To guarantee consistency, the package structure mimics the univariate package conformalInference by Ryan Tibshirani. See Lei, Gâ sell, Rinaldo, Tibshirani, & Wasserman (2018) <doi:10.1080/01621459.2017.1307116> for full and split conformal prediction in regression, and Barber, Candès, Ramdas, & Tibshirani (2023) <doi:10.1214/23-AOS2276> for extensions beyond exchangeability.
The tidySummarizedExperiment package provides a set of tools for creating and manipulating tidy data representations of SummarizedExperiment objects. SummarizedExperiment is a widely used data structure in bioinformatics for storing high-throughput genomic data, such as gene expression or DNA sequencing data. The tidySummarizedExperiment package introduces a tidy framework for working with SummarizedExperiment objects. It allows users to convert their data into a tidy format, where each observation is a row and each variable is a column. This tidy representation simplifies data manipulation, integration with other tidyverse packages, and enables seamless integration with the broader ecosystem of tidy tools for data analysis.
Fits Gaussian Mixtures by applying evolution. As fitness function a mixture of the chi square test for distributions and a novel measure for approximating the common area under curves between multiple Gaussians is used. The package presents an alternative to the commonly used Likelihood Maximization as is used in Expectation Maximization. The algorithm and applications of this package are published under: Lerch, F., Ultsch, A., Lotsch, J. (2020) <doi:10.1038/s41598-020-57432-w>. The evolution is based on the GA package: Scrucca, L. (2013) <doi:10.18637/jss.v053.i04> while the Gaussian Mixture Logic stems from AdaptGauss': Ultsch, A, et al. (2015) <doi:10.3390/ijms161025897>.
Computes experimental designs for a two-arm experiment with covariates via a number of methods: (0) complete randomization and randomization with forced-balance, (1) Greedily optimizing a balance objective function via pairwise switching. This optimization provides lower variance for the treatment effect estimator (and higher power) while preserving a design that is close to complete randomization. We return all iterations of the designs for use in a permutation test, (2) The second is via numerical optimization (via gurobi which must be installed, see <https://www.gurobi.com/documentation/9.1/quickstart_windows/r_ins_the_r_package.html>) a la Bertsimas and Kallus, (3) rerandomization, (4) Karp's method for one covariate, (5) exhaustive enumeration to find the optimal solution (only for small sample sizes), (6) Binary pair matching using the nbpMatching library, (7) Binary pair matching plus design number (1) to further optimize balance, (8) Binary pair matching plus design number (3) to further optimize balance, (9) Hadamard designs, (10) Simultaneous Multiple Kernels. In (1-9) we allow for three objective functions: Mahalanobis distance, Sum of absolute differences standardized and Kernel distances via the kernlab library. This package is the result of a stream of research that can be found in Krieger, A, Azriel, D and Kapelner, A "Nearly Random Designs with Greatly Improved Balance" (2016) <arXiv:1612.02315>, Krieger, A, Azriel, D and Kapelner, A "Better Experimental Design by Hybridizing Binary Matching with Imbalance Optimization" (2021) <arXiv:2012.03330>.
u-root embodies four different projects.
Affymetrix rta10 annotation data (chip rta10transcriptcluster) assembled using data from public repositories.
This package provides an implementation of the RDF4J Rio API, which reads and writes TriG.
This package provides an Rcmdr "plug-in" based on the TeachingDemos package, and is primarily for illustrative purposes.
Datasets to support COPDSexaulDimorphism Package.
Documentation at https://melpa.org/#/dired-rsync-transient