An implementation of extended state-space SIR models developed by Song Lab at UM school of Public Health. There are several functions available by 1) including a time-varying transmission modifier, 2) adding a time-dependent quarantine compartment, 3) adding a time-dependent antibody-immunization compartment. Wang L. (2020) <doi:10.6339/JDS.202007_18(3).0003>.
Unsupervised, multivariate, binary clustering for meaningful annotation of data, taking into account the uncertainty in the data. A specific constructor for trajectory analysis in movement ecology yields behavioural annotation of trajectories based on estimated local measures of velocity and turning angle, eventually with solar position covariate as a daytime indicator, ("Expectation-Maximization Binary Clustering for Behavioural Annotation").
Automated compound deconvolution, alignment across samples, and identification of metabolites by spectral library matching in Gas Chromatography - Mass spectrometry (GC-MS) untargeted metabolomics. Outputs a table with compound names, matching scores and the integrated area of the compound for each sample. Package implementation is described in Domingo-Almenara et al. (2016) <doi:10.1021/acs.analchem.6b02927>.
Because fungicide resistance is an important phenotypic trait for fungi and oomycetes, it is necessary to have a standardized method of statistically analyzing the Effective Concentration (EC) values. This package is designed for those who are not terribly familiar with R to be able to analyze and plot an entire set of isolates using the drc package.
This package implements genetic algorithm and particle swarm algorithm for real-valued functions. Various modifications (including hybridization and elitism) of these algorithms are provided. Implemented functions are based on ideas described in S. Katoch, S. Chauhan, V. Kumar (2020) <doi:10.1007/s11042-020-10139-6> and M. Clerc (2012) <https://hal.archives-ouvertes.fr/hal-00764996>.
We present this package for fitting structural equation models using the hierarchical likelihood method. This package allows extended structural equation model, including dynamic structural equation model. We illustrate the use of our packages with well-known data sets. Therefore, this package are able to handle two serious problems inadmissible solution and factor indeterminacy <doi:10.3390/sym13040657>.
Efficient implementations of the following multiple changepoint detection algorithms: Efficient Sparsity Adaptive Change-point estimator by Moen, Glad and Tveten (2023) <doi:10.48550/arXiv.2306.04702> , Informative Sparse Projection for Estimating Changepoints by Wang and Samworth (2017) <doi:10.1111/rssb.12243>, and the method of Pilliat et al (2023) <doi:10.1214/23-EJS2126>.
Empirical Bayes variable selection via ICM/M algorithm for normal, binary logistic, and Cox's regression. The basic problem is to fit high-dimensional regression which sparse coefficients. This package allows incorporating the Ising prior to capture structure of predictors in the modeling process. More information can be found in the papers listed in the URL below.
An implementation of the Invariance Partial Pruning (IVPP) approach described in Du, X., Johnson, S. U., Epskamp, S. (2025) The Invariance Partial Pruning Approach to The Network Comparison in Longitudinal Data. IVPP is a two-step method that first test for global network structural difference with invariance test and then inspect specific edge difference with partial pruning.
Bayesian methods for estimating developmental age from ordinal dental data. For an explanation of the model used, see Konigsberg (2015) <doi:10.3109/03014460.2015.1045430>. For details on the conditional correlation correction, see Sgheiza (2022) <doi:10.1016/j.forsciint.2021.111135>. Dental scoring is based on Moorrees, Fanning, and Hunt (1963) <doi:10.1177/00220345630420062701>.
Estimation of extended joint models with shared random effects. Longitudinal data are handled in latent process models for continuous (Gaussian or curvilinear) and ordinal outcomes while proportional hazard models are used for the survival part. We propose a frequentist approach using maximum likelihood estimation. See Saulnier et al, 2022 <doi:10.1016/j.ymeth.2022.03.003>.
The programs were developed for estimation of parameters and testing exponential versus Pareto distribution during our work on hydrologic extremes. See Kozubowski, T.J., A.K. Panorska, F. Qeadan, and A. Gershunov (2007) <doi:10.1080/03610910802439121>, and Panorska, A.K., A. Gershunov, and T.J. Kozubowski (2007) <doi:10.1007/978-0-387-34918-3_26>.
Generate pseudonymous animal names that are delightful and easy to remember like the Likable Leech and the Proud Chickadee. A unique pseudonym can be created for every unique element in a vector or row in a data frame. Pseudonyms can be customized and tracked over time, so that the same input is always assigned the same pseudonym.
An implementation of the time-series Susceptible-Infected-Recovered (TSIR) model using a number of different fitting options for infectious disease time series data. The manuscript based on this package can be found here <doi:10.1371/journal.pone.0185528>. The method implemented here is described by Finkenstadt and Grenfell (2000) <doi:10.1111/1467-9876.00187>.
Calculates the number of true positives and false positives from a dataset formatted for Jackknife alternative free-response receiver operating characteristic which is used for statistical analysis which is explained in the book Chakraborty DP (2017), "Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples", Taylor-Francis <https://www.crcpress.com/9781482214840>.
BEER implements a Bayesian model for analyzing phage-immunoprecipitation sequencing (PhIP-seq) data. Given a PhIPData object, BEER returns posterior probabilities of enriched antibody responses, point estimates for the relative fold-change in comparison to negative control samples, and more. Additionally, BEER provides a convenient implementation for using edgeR to identify enriched antibody responses.
This package contains the function to assess the batch sourcs by fitting all "sources" as random effects including two-way interaction terms in the Mixed Model(depends on lme4 package) to selected principal components, which were obtained from the original data correlation matrix. This package accompanies the book "Batch Effects and Noise in Microarray Experiements, chapter 12.
This package allows estimation and modelling of flight costs in animal (vertebrate) flight, implementing the aerodynamic power model. Flight performance is estimated based on basic morphological measurements such as body mass, wingspan and wing area. Afpt can be used to make predictions on how animals should adjust their flight behaviour and wingbeat kinematics to varying flight conditions.
rmlint finds space waste and other broken things on your file system and offers to remove it. rmlint can find:
duplicate files and duplicate directories,
non-stripped binaries (i.e. binaries with debug symbols),
broken symbolic links,
empty files and directories,
files with broken user and/or group ID.
Rho is used to test the generalization of inter rater reliability (IRR) statistics. Calculating rho starts by generating a large number of simulated, fully-coded data sets: a sizable collection of hypothetical populations, all of which have a kappa value below a given threshold -- which indicates unacceptable agreement. Then kappa is calculated on a sample from each of those sets in the collection to see if it is equal to or higher than the kappa in then real sample. If less than five percent of the distribution of samples from the simulated data sets is greater than actual observed kappa, the null hypothesis is rejected and one can conclude that if the two raters had coded the rest of the data, we would have acceptable agreement (kappa above the threshold).
Fits latent threshold model for simulated data and describes how to adjust model using real data. Implements algorithm proposed by Nakajima and West (2013) <doi:10.1080/07350015.2012.747847>. This package has a function to generate data, a function to configure priors and a function to fit the model. Examples may be checked inside the demonstration files.
Calculates the Boltzmann entropy of a landscape gradient. This package uses the analytical method created by Gao, P., Zhang, H. and Li, Z., 2018 (<doi:10.1111/tgis.12315>) and by Gao, P. and Li, Z., 2019 (<doi:10.1007/s10980-019-00854-3>). It also extend the original ideas by allowing calculations on data with missing values.
An integrated set of tools to analyze and simulate networks based on exponential-family random graph models (ERGMs). ergm is a part of the Statnet suite of packages for network analysis. See Hunter, Handcock, Butts, Goodreau, and Morris (2008) <doi:10.18637/jss.v024.i03> and Krivitsky, Hunter, Morris, and Klumb (2023) <doi:10.18637/jss.v105.i06>.
Lognormal models have broad applications in various research areas such as economics, actuarial science, biology, environmental science and psychology. The estimation problem in lognormal models has been extensively studied. This R package fuel implements thirty-nine existing and newly proposed estimators. See Zhang, F., and Gou, J. (2020), A unified framework for estimation in lognormal models, Technical report.