In order to make Arrow Database Connectivity ('ADBC <https://arrow.apache.org/adbc/>) accessible from R, an interface compliant with the DBI package is provided, using driver back-ends that are implemented in the adbcdrivermanager framework. This enables interacting with database systems using the Arrow data format, thereby offering an efficient alternative to ODBC for analytical applications.
This package provides a method to filter correlation and covariance matrices by averaging bootstrapped filtered hierarchical clustering and boosting. See Ch. Bongiorno and D. Challet, Covariance matrix filtering with bootstrapped hierarchies (2020) <arXiv:2003.05807> and Ch. Bongiorno and D. Challet, Reactive Global Minimum Variance Portfolios with k-BAHC covariance cleaning (2020) <arXiv:2005.08703>.
The main function generateDataset() processes a user-supplied .R file that contains metadata parameters in order to generate actual data. The metadata parameters have to be structured in the form of metadata objects, the format of which is outlined in the package vignette. This approach allows to generate artificial data in a transparent and reproducible manner.
Because fungicide resistance is an important phenotypic trait for fungi and oomycetes, it is necessary to have a standardized method of statistically analyzing the Effective Concentration (EC) values. This package is designed for those who are not terribly familiar with R to be able to analyze and plot an entire set of isolates using the drc package.
Unsupervised, multivariate, binary clustering for meaningful annotation of data, taking into account the uncertainty in the data. A specific constructor for trajectory analysis in movement ecology yields behavioural annotation of trajectories based on estimated local measures of velocity and turning angle, eventually with solar position covariate as a daytime indicator, ("Expectation-Maximization Binary Clustering for Behavioural Annotation").
Automated compound deconvolution, alignment across samples, and identification of metabolites by spectral library matching in Gas Chromatography - Mass spectrometry (GC-MS) untargeted metabolomics. Outputs a table with compound names, matching scores and the integrated area of the compound for each sample. Package implementation is described in Domingo-Almenara et al. (2016) <doi:10.1021/acs.analchem.6b02927>.
An implementation of extended state-space SIR models developed by Song Lab at UM school of Public Health. There are several functions available by 1) including a time-varying transmission modifier, 2) adding a time-dependent quarantine compartment, 3) adding a time-dependent antibody-immunization compartment. Wang L. (2020) <doi:10.6339/JDS.202007_18(3).0003>.
This package implements genetic algorithm and particle swarm algorithm for real-valued functions. Various modifications (including hybridization and elitism) of these algorithms are provided. Implemented functions are based on ideas described in S. Katoch, S. Chauhan, V. Kumar (2020) <doi:10.1007/s11042-020-10139-6> and M. Clerc (2012) <https://hal.archives-ouvertes.fr/hal-00764996>.
We present this package for fitting structural equation models using the hierarchical likelihood method. This package allows extended structural equation model, including dynamic structural equation model. We illustrate the use of our packages with well-known data sets. Therefore, this package are able to handle two serious problems inadmissible solution and factor indeterminacy <doi:10.3390/sym13040657>.
Efficient implementations of the following multiple changepoint detection algorithms: Efficient Sparsity Adaptive Change-point estimator by Moen, Glad and Tveten (2023) <doi:10.48550/arXiv.2306.04702> , Informative Sparse Projection for Estimating Changepoints by Wang and Samworth (2017) <doi:10.1111/rssb.12243>, and the method of Pilliat et al (2023) <doi:10.1214/23-EJS2126>.
An implementation of the Invariance Partial Pruning (IVPP) approach described in Du, X., Johnson, S. U., Epskamp, S. (2025) The Invariance Partial Pruning Approach to The Network Comparison in Longitudinal Data. IVPP is a two-step method that first test for global network structural difference with invariance test and then inspect specific edge difference with partial pruning.
Empirical Bayes variable selection via ICM/M algorithm for normal, binary logistic, and Cox's regression. The basic problem is to fit high-dimensional regression which sparse coefficients. This package allows incorporating the Ising prior to capture structure of predictors in the modeling process. More information can be found in the papers listed in the URL below.
Estimation of extended joint models with shared random effects. Longitudinal data are handled in latent process models for continuous (Gaussian or curvilinear) and ordinal outcomes while proportional hazard models are used for the survival part. We propose a frequentist approach using maximum likelihood estimation. See Saulnier et al, 2022 <doi:10.1016/j.ymeth.2022.03.003>.
Bayesian methods for estimating developmental age from ordinal dental data. For an explanation of the model used, see Konigsberg (2015) <doi:10.3109/03014460.2015.1045430>. For details on the conditional correlation correction, see Sgheiza (2022) <doi:10.1016/j.forsciint.2021.111135>. Dental scoring is based on Moorrees, Fanning, and Hunt (1963) <doi:10.1177/00220345630420062701>.
The programs were developed for estimation of parameters and testing exponential versus Pareto distribution during our work on hydrologic extremes. See Kozubowski, T.J., A.K. Panorska, F. Qeadan, and A. Gershunov (2007) <doi:10.1080/03610910802439121>, and Panorska, A.K., A. Gershunov, and T.J. Kozubowski (2007) <doi:10.1007/978-0-387-34918-3_26>.
Generate pseudonymous animal names that are delightful and easy to remember like the Likable Leech and the Proud Chickadee. A unique pseudonym can be created for every unique element in a vector or row in a data frame. Pseudonyms can be customized and tracked over time, so that the same input is always assigned the same pseudonym.
Calculates the number of true positives and false positives from a dataset formatted for Jackknife alternative free-response receiver operating characteristic which is used for statistical analysis which is explained in the book Chakraborty DP (2017), "Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples", Taylor-Francis <https://www.crcpress.com/9781482214840>.
An implementation of the time-series Susceptible-Infected-Recovered (TSIR) model using a number of different fitting options for infectious disease time series data. The manuscript based on this package can be found here <doi:10.1371/journal.pone.0185528>. The method implemented here is described by Finkenstadt and Grenfell (2000) <doi:10.1111/1467-9876.00187>.
Supports modelling real-time case data to facilitate the real-time surveillance of infectious diseases and other point phenomena. The package provides automated computational grid generation over an area of interest with methods to map covariates between geographies, model fitting including spatially aggregated case counts, and predictions and visualisation. Both Bayesian and maximum likelihood methods are provided. Log-Gaussian Cox Processes are described by Diggle et al. (2013) <doi:10.1214/13-STS441> and we provide both the low-rank approximation for Gaussian processes described by Solin and Särkkä (2020) <doi:10.1007/s11222-019-09886-w> and Riutort-Mayol et al (2023) <doi:10.1007/s11222-022-10167-2> and the nearest neighbour Gaussian process described by Datta et al (2016) <doi:10.1080/01621459.2015.1044091>.
Rho is used to test the generalization of inter rater reliability (IRR) statistics. Calculating rho starts by generating a large number of simulated, fully-coded data sets: a sizable collection of hypothetical populations, all of which have a kappa value below a given threshold -- which indicates unacceptable agreement. Then kappa is calculated on a sample from each of those sets in the collection to see if it is equal to or higher than the kappa in then real sample. If less than five percent of the distribution of samples from the simulated data sets is greater than actual observed kappa, the null hypothesis is rejected and one can conclude that if the two raters had coded the rest of the data, we would have acceptable agreement (kappa above the threshold).
This package lets you read and write JSON Web Keys (JWK, rfc7517), generate and verify JSON Web Signatures (JWS, rfc7515) and encode/decode JSON Web Tokens (JWT, rfc7519). These standards provide modern signing and encryption formats that are natively supported by browsers via the JavaScript WebCryptoAPI, and used by services like OAuth 2.0, LetsEncrypt, and Github Apps.
OpenTelemetry is a collection of tools, APIs, and SDKs used to instrument, generate, collect, and export telemetry data (metrics, logs, and traces) for analysis in order to understand your software's performance and behavior. This package implements the OpenTelemetry API. Use this package as a dependency if you want to instrument your R package for OpenTelemetry.
This package contains R-functions to perform an fMRI analysis as described in Polzehl and Tabelow (2019) <DOI:10.1007/978-3-030-29184-6>, Tabelow et al. (2006) <DOI:10.1016/j.neuroimage.2006.06.029>, Polzehl et al. (2010) <DOI:10.1016/j.neuroimage.2010.04.241>, Tabelow and Polzehl (2011) <DOI:10.18637/jss.v044.i11>.
In this package Cardoso's JADE algorithm as well as his functions for joint diagonalization are ported to R. Also several other blind source separation (BSS) methods, like AMUSE and SOBI, and some criteria for performance evaluation of BSS algorithms, are given. The package is described in Miettinen, Nordhausen and Taskinen (2017) <doi:10.18637/jss.v076.i02>.