Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Hyvärinen's score matching (Hyvärinen, 2005) <https://jmlr.org/papers/v6/hyvarinen05a.html> is a useful estimation technique when the normalising constant for a probability distribution is difficult to compute. This package implements score matching estimators using automatic differentiation in the CppAD library <https://github.com/coin-or/CppAD> and is designed for quickly implementing score matching estimators for new models. Also available is general robustification (Windham, 1995) <https://www.jstor.org/stable/2346159>. Already in the package are estimators for directional distributions (Mardia, Kent and Laha, 2016) <doi:10.48550/arXiv.1604.08470> and the flexible Polynomially-Tilted Pairwise Interaction model for compositional data. The latter estimators perform well when there are zeros in the compositions (Scealy and Wood, 2023) <doi:10.1080/01621459.2021.2016422>, even many zeros (Scealy, Hingee, Kent, and Wood, 2024) <doi:10.1007/s11222-024-10412-w>. A partial interface to CppAD's ADFun objects is also available.
An R wrapper for pulling data from the Spotify Web API <https://developer.spotify.com/documentation/web-api/> in bulk, or post items on a Spotify user's playlist.
This is the implementation of the novel structural Bayesian information criterion by Zhou, 2020 (under review). In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework. Additionally, we also provide the implementation of a two-step algorithm to generate the candidate model pool.
This package provides functions to combine, normalize and visualize spectral data, perform principal component analysis (PCA), and assemble customizable image grids suitable for publication-quality scientific figures.
Users may specify what fundamental qualities of a new study have or have not changed in an attempt to reproduce or replicate an original study. A comparison of the differences is visualized. Visualization approach follows Patil', Peng', and Leek (2016) <doi:10.1101/066803>.
This package provides wrappers for scclust', a C library for computationally efficient size-constrained clustering with near-optimal performance. See <https://github.com/fsavje/scclust> for more information.
This package provides tools for fitting self-validated ensemble models (SVEM; Lemkus et al. (2021) <doi:10.1016/j.chemolab.2021.104439>) in small-sample design-of-experiments and related workflows, using elastic net and relaxed elastic net regression via glmnet (Friedman et al. (2010) <doi:10.18637/jss.v033.i01>). Fractional random-weight bootstraps with anti-correlated validation copies are used to tune penalty paths by validation-weighted AIC/BIC. Supports Gaussian and binomial responses, deterministic expansion helpers for shared factor spaces, prediction with bootstrap uncertainty, and a random-search optimizer that respects mixture constraints and combines multiple responses via desirability functions. Also includes a permutation-based whole-model test for Gaussian SVEM fits (Karl (2024) <doi:10.1016/j.chemolab.2024.105122>). Package code was drafted with assistance from generative AI tools.
Identify 17 Sustainable Development Goals and associated 169 targets in text.
Implementations of the Single Transferable Vote counting system. By default, it uses the Cambridge method for surplus allocation and Droop method for quota calculation. Fractional surplus allocation and the Hare quota are available as options.
An implementation of Simultaneous Truth and Performance Level Estimation (STAPLE) <doi:10.1109/TMI.2004.828354>. This method is used when there are multiple raters for an object, typically an image, and this method fuses these ratings into one rating. It uses an expectation-maximization method to estimate this rating and the individual specificity/sensitivity for each rater.
This package contains tests for association between a set of genetic variants and multiple correlated outcomes that are interval censored. Interval-censored data arises when the exact time of the onset of an outcome of interest is unknown but known to fall between two time points.
This package contains functions and datasets for math taught in school. A main focus is set to prime-calculation.
Computes synchrony as windowed cross-correlation based on two-dimensional time series in a text file you can upload. SUSY works as described in Tschacher & Meier (2020) <doi:10.1080/10503307.2019.1612114>.
Enables drag-and-drop behaviour in Shiny apps, by exposing the functionality of the SortableJS <https://sortablejs.github.io/Sortable/> JavaScript library as an htmlwidget'. You can use this in Shiny apps and widgets, learnr tutorials as well as R Markdown. In addition, provides a custom learnr question type - question_rank() - that allows ranking questions with drag-and-drop.
Formulates a sparse distance weighted discrimination (SDWD) for high-dimensional classification and implements a very fast algorithm for computing its solution path with the L1, the elastic-net, and the adaptive elastic-net penalties. More details about the methodology SDWD is seen on Wang and Zou (2016) (<doi:10.1080/10618600.2015.1049700>).
This package implements scalable Markov chain Monte Carlo (Sca-MCMC) algorithms for Bayesian inference in dynamic generalized linear models (DGLMs). The package supports Pareto-type and Gamma-type DGLMs, which are suitable for modeling heavy-tailed phenomena such as wealth allocation and financial returns. It provides simulation tools for synthetic DGLM data, adaptive mutation-rate strategies (ScaI, ScaII, ScaIII), geometric temperature ladders for parallel tempering, and posterior predictive evaluation metrics (e.g., R2, RMSE). The methodology is based on the scalable MCMC framework described in Guo et al. (2025).
Package provides the possibility to sampling complete datasets from a normal distribution to simulate cluster randomized trails for different study designs.
The notion of power index has been widely used in literature to evaluate the influence of individual players (e.g., voters, political parties, nations, stockholders, etc.) involved in a collective decision situation like an electoral system, a parliament, a council, a management board, etc., where players may form coalitions. Traditionally this ranking is determined through numerical evaluation. More often than not however only ordinal data between coalitions is known. The package socialranking offers a set of solutions to rank players based on a transitive ranking between coalitions, including through CP-Majority, ordinal Banzhaf or lexicographic excellence solution summarized by Tahar Allouche, Bruno Escoffier, Stefano Moretti and Meltem à ztürk (2020, <doi:10.24963/ijcai.2020/3>).
The Structural Topic and Sentiment-Discourse (STS) model allows researchers to estimate topic models with document-level metadata that determines both topic prevalence and sentiment-discourse. The sentiment-discourse is modeled as a document-level latent variable for each topic that modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by the document-level metadata. The STS model can be useful for regression analysis with text data in addition to topic modelingâ s traditional use of descriptive analysis. The method was developed in Chen and Mankad (2024) <doi:10.1287/mnsc.2022.00261>.
This package provides tools to simulate and analyse datasets of social interactions between individuals using hierarchical Bayesian models implemented in Stan. Model fitting is performed via the rstan package. Users can generate realistic interaction data where individual phenotypes influence and respond to those of their partners, with control over sampling design parameters such as the number of individuals, partners, and repeated dyads. The simulation framework allows flexible control over variation and correlation in mean trait values, social responsiveness, and social impact, making it suitable for research on interacting phenotypes and on direct and indirect genetic effects ('DGEs and IGEs'). The package also includes functions to fit and compare alternative models of social effects, including impactâ responsiveness, varianceâ partitioning, and trait-based models, and to summarise model performance in terms of bias and dispersion. For a more detailed description of the available models and impactâ responsiveness, see the accompanying preprint Wijnhorst et al. (2025) <doi:10.32942/X2F65M>.
Ozone, NOx (= Sum of nitrogen monoxide and nitrogen dioxide), nitrogen monoxide, ambient temperature, dew point, wind speed and wind direction at 3 sites around lake of Lucerne in Central Switzerland in 30 min time resolution for year 2004.
Cleans and formats language transcripts guided by a series of transformation options (e.g., lemmatize words, omit stopwords, split strings across rows). SemanticDistance computes two distinct metrics of cosine semantic distance (experiential and embedding). These values reflect pairwise cosine distance between different elements or chunks of a language sample. SemanticDistance can process monologues (e.g., stories, ordered text), dialogues (e.g., conversation transcripts), word pairs arrayed in columns, and unordered word lists. Users specify options for how they wish to chunk distance calculations. These options include: rolling ngram-to-word distance (window of n-words to each new word), ngram-to-ngram distance (2-word chunk to the next 2-word chunk), pairwise distance between words arrayed in columns, matrix comparisons (i.e., all possible pairwise distances between words in an unordered list), turn-by-turn distance (talker to talker in a dialogue transcript). SemanticDistance includes visualization options for analyzing distances as time series data and simple semantic network dynamics (e.g., clustering, undirected graph network).
Sparse Linear Method(SLIM) predicts ratings and top-n recommendations suited for sparse implicit positive feedback systems. SLIM is decomposed into multiple elasticnet optimization problems which are solved in parallel over multiple cores. The package is based on "SLIM: Sparse Linear Methods for Top-N Recommender Systems" by Xia Ning and George Karypis <doi:10.1109/ICDM.2011.134>.
sqliter helps users, mainly data munging practioneers, to organize their sql calls in a clean structure. It simplifies the process of extracting and transforming data into useful formats.